Functional microdomains in bacterial membranes.

The membranes of eukaryotic cells harbor microdomains known as lipid rafts that contain a variety of signaling and transport proteins. Here we show that bacterial membranes contain microdomains functionally similar to those of eukaryotic cells. These membrane microdomains from diverse bacteria harbor homologs of Flotillin-1, a eukaryotic protein found exclusively in lipid rafts, along with proteins involved in signaling and transport. Inhibition of lipid raft formation through the action of zaragozic acid--a known inhibitor of squalene synthases--impaired biofilm formation and protein secretion but not cell viability. The orchestration of physiological processes in microdomains may be a more widespread feature of membranes than previously appreciated.

[1]  Jin Kusaka,et al.  Lipid domains in bacterial membranes , 2006, Molecular microbiology.

[2]  V. Nizet,et al.  A cholesterol biosynthesis inhibitor blocks Staphylococcus aureus virulence. , 2008, Science.

[3]  Robert G Parton,et al.  Flotillins and the PHB Domain Protein Family: Rafts, Worms and Anaesthetics , 2005, Traffic.

[4]  M. Hecker,et al.  Role of the Fur Regulon in Iron Transport in Bacillus subtilis , 2006, Journal of bacteriology.

[5]  S Dusko Ehrlich,et al.  Systematic localisation of proteins fused to the green fluorescent protein in Bacillus subtilis: Identification of new proteins at the DNA replication factory , 2006, Proteomics.

[6]  A. Wach PCR‐synthesis of marker cassettes with long flanking homology regions for gene disruptions in S. cerevisiae , 1996, Yeast.

[7]  M. Otto,et al.  Staphylococcus quorum sensing in biofilm formation and infection. , 2006, International journal of medical microbiology : IJMM.

[8]  Kouji Matsumoto,et al.  Cardiolipin Domains in Bacillus subtilis Marburg Membranes , 2004, Journal of bacteriology.

[9]  R. Novick Genetic systems in staphylococci. , 1991, Methods in enzymology.

[10]  M. Bramkamp,et al.  Characterization and subcellular localization of a bacterial flotillin homologue. , 2009, Microbiology.

[11]  M. Falagas,et al.  Statins for sepsis: a critical and updated review. , 2009, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[12]  C. Stuermer,et al.  Scaffolding microdomains and beyond: the function of reggie/flotillin proteins , 2005, Cellular and Molecular Life Sciences CMLS.

[13]  R. Losick,et al.  Amyloid fibers provide structural integrity to Bacillus subtilis biofilms , 2010, Proceedings of the National Academy of Sciences.

[14]  I Debruyne,et al.  Inorganic phosphate determination: colorimetric assay based on the formation of a rhodamine B-phosphomolybdate complex. , 1983, Analytical biochemistry.

[15]  M. Smeltzer,et al.  Mutation of sarA in Staphylococcus aureus Limits Biofilm Formation , 2003, Infection and Immunity.

[16]  J Schultz,et al.  SMART, a simple modular architecture research tool: identification of signaling domains. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[17]  S. Ehrlich,et al.  Genes Involved in Formation of Structured Multicellular Communities by Bacillus subtilis , 2004, Journal of bacteriology.

[18]  A. Grossman,et al.  An Exported Peptide Functions Intracellularly to Contribute to Cell Density Signaling in B. subtilis , 1997, Cell.

[19]  J. Schwender,et al.  Properties and inhibition of the first two enzymes of the non-mevalonate pathway of isoprenoid biosynthesis. , 2000, Biochemical Society transactions.

[20]  M. Sarvas,et al.  The PrsA lipoprotein is essential for protein secretion in Bacillus subtilis and sets a limit for high‐level secretion , 1993, Molecular microbiology.

[21]  A. Liappis,et al.  The effect of statins on mortality in patients with bacteremia. , 2001, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[22]  C. Poulter,et al.  Cloning, Solubilization, and Characterization of Squalene Synthase from Thermosynechococcus elongatus BP-1 , 2008, Journal of bacteriology.

[23]  C. Harwood,et al.  Molecular biological methods for Bacillus , 1990 .

[24]  Roberto Kolter,et al.  Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis , 1998, Molecular microbiology.

[25]  N. Hirashima,et al.  Flotillin-1 Regulates IgE Receptor-Mediated Signaling in Rat Basophilic Leukemia (RBL-2H3) Cells , 2006, The Journal of Immunology.

[26]  M. Arnaud,et al.  New Vector for Efficient Allelic Replacement in Naturally Nontransformable, Low-GC-Content, Gram-Positive Bacteria , 2004, Applied and Environmental Microbiology.

[27]  M. Fischbach,et al.  Structurally diverse natural products that cause potassium leakage trigger multicellularity in Bacillus subtilis , 2009, Proceedings of the National Academy of Sciences.

[28]  Peer Bork,et al.  SMART 6: recent updates and new developments , 2008, Nucleic Acids Res..

[29]  M. Falagas,et al.  Statins for infection and sepsis: a systematic review of the clinical evidence. , 2008, The Journal of antimicrobial chemotherapy.

[30]  Nathan W. Levin,et al.  Statin Use and Hospitalization for Sepsis in Patients With Chronic Kidney Disease , 2007 .

[31]  Mark M. Rasenick,et al.  Lipid raft microdomains and neurotransmitter signalling , 2007, Nature Reviews Neuroscience.

[32]  H. Möller,et al.  Evolution of prokaryotic SPFH proteins , 2009, BMC Evolutionary Biology.

[33]  J. Rosch,et al.  A Microdomain for Protein Secretion in Gram-Positive Bacteria , 2004, Science.

[34]  Kai Simons,et al.  Lipid Rafts As a Membrane-Organizing Principle , 2010, Science.

[35]  S. Bron,et al.  Thiol-Disulfide Oxidoreductases Are Essential for the Production of the Lantibiotic Sublancin 168* , 2002, The Journal of Biological Chemistry.

[36]  James R. Brown,et al.  Identification, Evolution, and Essentiality of the Mevalonate Pathway for Isopentenyl Diphosphate Biosynthesis in Gram-Positive Cocci , 2000, Journal of bacteriology.

[37]  R. Losick,et al.  A major protein component of the Bacillus subtilis biofilm matrix , 2006, Molecular microbiology.

[38]  Nektarios Tavernarakis,et al.  The SPFH domain: implicated in regulating targeted protein turnover in stomatins and other membrane-associated proteins. , 1999, Trends in biochemical sciences.

[39]  A. Grossman,et al.  Integration of multiple developmental signals in Bacillus subtilis through the Spo0A transcription factor. , 1993, Genes & development.

[40]  F. Young,et al.  Transduction in Bacillus subtilis by Bacteriophage SPP1 , 1974, Journal of virology.

[41]  M. Bakovic,et al.  Lipid rafts in health and disease , 2007, Biology of the cell.

[42]  R. Losick,et al.  Sporulenes, Heptaprenyl Metabolites from Bacillus subtilis Spores , 2008, Organic letters.

[43]  C. Kaito,et al.  Phosphodiesterase Activity of CvfA Is Required for Virulence in Staphylococcus aureus* , 2008, Journal of Biological Chemistry.

[44]  J. Bolard How do the polyene macrolide antibiotics affect the cellular membrane properties? , 1986, Biochimica et biophysica acta.

[45]  Sarah Dubrac,et al.  New Insights into the WalK/WalR (YycG/YycF) Essential Signal Transduction Pathway Reveal a Major Role in Controlling Cell Wall Metabolism and Biofilm Formation in Staphylococcus aureus , 2007, Journal of bacteriology.

[46]  J. Nabekura,et al.  Clustering of Neuronal K+-Cl− Cotransporters in Lipid Rafts by Tyrosine Phosphorylation* , 2009, The Journal of Biological Chemistry.

[47]  R. Losick,et al.  A polycyclic terpenoid that alleviates oxidative stress , 2008, Proceedings of the National Academy of Sciences.

[48]  Deborah A. Brown Isolation and Use of Rafts , 2002, Current protocols in immunology.

[49]  W. Dowhan,et al.  Cardiolipin membrane domains in prokaryotes and eukaryotes. , 2009, Biochimica et biophysica acta.

[50]  R. Losick,et al.  Fruiting body formation by Bacillus subtilis , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[51]  S. Ehrlich,et al.  Essential Bacillus subtilis genes , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[52]  F. Götz,et al.  Structure and Biosynthesis of Staphyloxanthin from Staphylococcus aureus* , 2005, Journal of Biological Chemistry.

[53]  J. D. Karkas,et al.  Zaragozic acids: a family of fungal metabolites that are picomolar competitive inhibitors of squalene synthase. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[54]  Bronwyn G. Butcher,et al.  Identification of Bacillus subtilis σW‐dependent genes that provide intrinsic resistance to antimicrobial compounds produced by Bacilli , 2006, Molecular microbiology.

[55]  S. Ito,et al.  An Alkali-Inducible Flotillin-like Protein fromBacillus haloduransC-125 , 2005, The protein journal.

[56]  S. Robbins,et al.  The SPFH domain-containing proteins: more than lipid raft markers. , 2007, Trends in cell biology.

[57]  L. Pike Rafts defined: a report on the Keystone symposium on lipid rafts and cell function Published, JLR Papers in Press, April 27, 2006. , 2006, Journal of Lipid Research.

[58]  A. Endo [56] 3-hydroxy-3-methylglutaryl-CoA reductase inhibitors from Penicillium and Monascus Species , 1981 .

[59]  F. Roche,et al.  The Elastin-binding Protein of Staphylococcus aureus(EbpS) Is Expressed at the Cell Surface as an Integral Membrane Protein and Not as a Cell Wall-associated Protein* , 2002, The Journal of Biological Chemistry.

[60]  S. Takahashi,et al.  A 1-deoxy-D-xylulose 5-phosphate reductoisomerase catalyzing the formation of 2-C-methyl-D-erythritol 4-phosphate in an alternative nonmevalonate pathway for terpenoid biosynthesis. , 1998, Proceedings of the National Academy of Sciences of the United States of America.