Molecular simulation of the vapor–liquid coexistence of mercury

The vapor‐liquid coexistence properties of mercury are determined from molecular simulation using empirical intermolecular potentials, ab initio two-body potentials, and an effective multibody intermolecular potential. Comparison with experiment shows that pair-interactions alone are inadequate to account for the vapor‐liquid coexistence properties of mercury. It is shown that very good agreement between theory and experiment can be obtained by combining an accurate two-body ab initio potential with the addition of an empirically determined multibody contribution. As a consequence of this multibody contribution, we can reliably predict mercury’s phase coexistence properties and the heats of vaporization. The pair distribution function of mercury can also be predicted with reasonable accuracy. © 2003 American Institute of Physics. @DOI: 10.1063/1.1605381#

[1]  M. J. Regan,et al.  X-ray reflectivity measurements of surface layering in liquid mercury. , 1995, Physical review letters.

[2]  Athanassios Z. Panagiotopoulos,et al.  Phase equilibria by simulation in the Gibbs ensemble , 1988 .

[3]  David A. Kofke,et al.  Gibbs-Duhem integration: a new method for direct evaluation of phase coexistence by molecular simulation , 1993 .

[4]  Yoshio Waseda,et al.  The Structure of Non-Crystalline Materials: Liquids and Amorphous Solids , 1980 .

[5]  R. Sadus,et al.  Molecular simulation of intermolecular attraction and repulsion in coexisting liquid and vapour phases , 1997 .

[6]  Friedrich Hensel,et al.  35 years Liquid Metals conferences: what do we and what do we not yet understand about liquid metals? , 2002 .

[7]  R. Sadus Molecular simulation of the phase behaviour of ternary fluid mixtures: the effect of a third component on vapour–liquid and liquid–liquid coexistence , 1999 .

[8]  Victor V. Goldman,et al.  The isotropic intermolecular potential for H2 and D2 in the solid and gas phases , 1978 .

[9]  J. Pablo Simulation of phase equilibria for chain molecules , 1992 .

[10]  L. Zarkova,et al.  Interaction potential in 1?g+Hg2: fit to the experimental data , 1982 .

[11]  M. Dolg,et al.  GROUND STATE PROPERTIES OF HG2. 1. A PSEUDOPOTENTIAL CONFIGURATION INTERACTION STUDY , 1996 .

[12]  M. S. Singh Relativistic effects in mercury: Atom, clusters, and bulk. , 1994, Physical review. B, Condensed matter.

[13]  Daan Frenkel,et al.  Configurational bias Monte Carlo: a new sampling scheme for flexible chains , 1992 .

[14]  R. Reid,et al.  The Properties of Gases and Liquids , 1977 .

[15]  F. Hensel The liquid-vapour phase transition in fluid mercury , 1995 .

[16]  D. C. Ginnings,et al.  HEAT CAPACITY OF LIQUID MERCURY BETWEEN 0 AND 450 C CALCULATION OF CERTAIN THERMODYNAMIC PROPERTIES OF THE SATURATED LIQUID AND VAPOR , 1951 .

[17]  J. A. Barker,et al.  Liquid argon: Monte carlo and molecular dynamics calculations , 1971 .

[18]  L. Frommhold,et al.  Interaction-induced polarizability invariants and the interatomic potential of the mercury diatom , 1998 .

[19]  R. Cortès,et al.  X‐ray diffraction study of liquid mercury over temperature range 173 to 473 K , 1979 .

[20]  G. Tóth An iterative scheme to derive pair potentials from structure factors and its application to liquid mercury , 2003 .

[21]  Christian F. Kunz,et al.  Ab initio study of the individual interaction energy components in the ground state of the mercury dimer , 1996 .

[22]  K. Szalewicz,et al.  Complete ab initio three-body nonadditive potential in Monte Carlo simulations of vapor-liquid equilibria and pure phases of argon , 2001 .

[23]  Edward Teller,et al.  Interaction of the van der Waals Type Between Three Atoms , 1943 .

[24]  Richard J. Sadus,et al.  Molecular simulation of the phase behavior of noble gases using accurate two-body and three-body intermolecular potentials , 1999 .

[25]  E. Lomba,et al.  INFLUENCE OF THREE-BODY FORCES ON THE GAS-LIQUID COEXISTENCE OF SIMPLE FLUIDS : THE PHASE EQUILIBRIUM OF ARGON , 1997 .

[26]  R. Sadus,et al.  Three-body interactions and the phase equilibria of mixtures , 2001 .

[27]  K. Leonhard,et al.  Monte Carlo simulations of neon and argon using ab initio potentials , 2000 .

[28]  K. Tamura Structural changes and the metal-non-metal transition insupercritical fluids , 1996 .

[29]  B. Kirchner,et al.  Molecular simulation of the vapour–liquid phase coexistence of neon and argon using ab initio potentials , 2001 .

[30]  A. Panagiotopoulos,et al.  Phase Equilibria of Lattice Polymers from Histogram Reweighting Monte Carlo Simulations , 1997, cond-mat/9708095.

[31]  Takashi Sato,et al.  On the Equation of State of Mercury Vapour , 1962 .

[32]  P. Schwerdtfeger,et al.  The potential energy curve and dipole polarizability tensor of mercury dimer , 2001 .

[33]  Richard J. Sadus,et al.  Molecular Simulation of Fluids: Theory, Algorithms and Object-Orientation , 1999 .

[34]  A. Panagiotopoulos,et al.  Phase equilibria in ternary Lennard-Jones systems , 1995 .

[35]  Lindsey J. Munro,et al.  An interatomic potential for mercury dimer , 2001 .