M-Polynomials and Degree-Based Topological Indices of VC5C7[p,q] and HC5C7[p,q] Nanotubes

Analysts are creating materials, for example, a carbon nanotube-based composite created by NASA that bends when a voltage is connected. Applications incorporate the use of an electrical voltage to change the shape (transform) of airship wings and different structures. Topological indices are numerical parameters of a molecular graph which characterize its topology and are usually graph invariant. Topological indices are used, for example, in the development of quantitative structure-activity relationships (QSARs) in which the biological activity or other properties of molecules are correlated with their chemical structure. Topological indices catch symmetry of molecular structures and help us to predict properties, for example, boiling points, viscosity, and the radius of gyrations of nanotubes. In this paper, we compute <inline-formula> <tex-math notation="LaTeX">${M}$ </tex-math></inline-formula>-polynomials of two nanotubes, <inline-formula> <tex-math notation="LaTeX">$VC_{5} C_{7} [p,q]$ </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">$HC_{5} C_{7} [p,q]$ </tex-math></inline-formula>. By applying calculus on these <inline-formula> <tex-math notation="LaTeX">${M}$ </tex-math></inline-formula>-polynomials, we produce formulas of numerous degree-based topological indices, which are functions relying on parameters of the structure and, in combination, decide properties of the concerned polymeric compound.

[1]  W. D. de Heer,et al.  Carbon Nanotubes--the Route Toward Applications , 2002, Science.

[2]  H. Wiener Structural determination of paraffin boiling points. , 1947, Journal of the American Chemical Society.

[3]  Shin Min Kang,et al.  Some Algebraic Polynomials and Topological Indices of Generalized Prism and Toroidal Polyhex Networks , 2016, Symmetry.

[4]  I. W Nowell,et al.  Molecular Connectivity in Structure-Activity Analysis , 1986 .

[5]  Gabor A. Somorjai,et al.  Research in Nanosciences — Great Opportunity for Catalysis Science. , 2002 .

[6]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[7]  I. Gutman,et al.  Mathematical Concepts in Organic Chemistry , 1986 .

[8]  Sonja Nikolic,et al.  The Vertex-Connectivity Index Revisited , 1998, J. Chem. Inf. Comput. Sci..

[9]  Ahmad Mehdi,et al.  Molecular chemistry and nanosciences: on the way to interactive materials , 2005 .

[10]  M. Randic Characterization of molecular branching , 1975 .

[11]  N. Trinajstic,et al.  The Zagreb Indices 30 Years After , 2003 .

[12]  Yongtang Shi,et al.  ON MOLECULAR GRAPHS WITH SMALLEST AND GREATEST ZEROTH-ORDER GENERAL RANDIĆ INDEX∗ , .

[13]  Ante Graovac,et al.  Augmented Zagreb index , 2010 .

[14]  M. Randic,et al.  The connectivity index 25 years after. , 2001, Journal of molecular graphics & modelling.

[15]  Wei Gao,et al.  Electron Energy Studying of Molecular Structures via Forgotten Topological Index Computation , 2016 .

[16]  Ernesto Estrada Atom–bond connectivity and the energetic of branched alkanes , 2008 .

[17]  Béla Bollobás,et al.  Graphs of Extremal Weights , 1998, Ars Comb..

[18]  Kathryn Fraughnaugh,et al.  Introduction to graph theory , 1973, Mathematical Gazette.

[19]  Muhammad Kamran Siddiqui,et al.  New and Modified Eccentric Indices of Octagonal Grid Omn , 2018 .

[20]  N. Trinajstic Xueliang Li, Ivan Gutman: Mathematical Aspects of Randić-type Molecular Structure Descriptors , 2006 .

[21]  L. Hall,et al.  Molecular connectivity in chemistry and drug research , 1976 .

[22]  Kinkar Chandra Das,et al.  Atom-bond connectivity index of graphs , 2010, Discret. Appl. Math..

[23]  Wei Gao,et al.  Degree-based indices computation for special chemical molecular structures using edge dividing method , 2016 .

[24]  David Hui,et al.  The revolutionary creation of new advanced materials - Carbon nanotube composites , 2002 .

[25]  Ante Graovac,et al.  Valence connectivity versus Randic, Zagreb and modified Zagreb index: A linear algorithm to check discriminative properties of indices in acyclic molecular graphs , 2004 .

[26]  Siemion Fajtlowicz,et al.  On conjectures of Graffiti , 1988, Discret. Math..

[27]  Wei Gao,et al.  Topological Indices Study of Molecular Structure in Anticancer Drugs , 2016 .

[28]  I. Gutman,et al.  Wiener Index of Trees: Theory and Applications , 2001 .

[29]  Yi Luo,et al.  Spatial and temporal variations in the relationship between lake water surface temperatures and water quality - A case study of Dianchi Lake. , 2018, The Science of the total environment.

[30]  Pierre Hansen,et al.  Graphs with maximum connectivity index , 2003, Comput. Biol. Chem..

[31]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[32]  N. Trinajstic,et al.  On reformulated Zagreb indices , 2004, Molecular Diversity.

[33]  Ernesto Estrada,et al.  AN ATOM-BOND CONNECTIVITY INDEX : MODELLING THE ENTHALPY OF FORMATION OF ALKANES , 1998 .