Secure quantum key distribution using continuous variables of single photons.

We analyze the distribution of secure keys using quantum cryptography based on the continuous variable degree of freedom of entangled photon pairs. We derive the information capacity of a scheme based on the spatial entanglement of photons from a realistic source, and show that the standard measures of security known for quadrature-based continuous variable quantum cryptography (CV-QKD) are inadequate. A specific simple eavesdropping attack is analyzed to illuminate how secret information may be distilled well beyond the bounds of the usual CV-QKD measures.

[1]  Norbert Lütkenhaus,et al.  Entanglement as a precondition for secure quantum key distribution. , 2004, Physical review letters.

[2]  P. Grangier,et al.  Continuous variable quantum cryptography using coherent states. , 2001, Physical review letters.

[3]  Leonardo Neves,et al.  Generation of entangled states of qudits using twin photons. , 2004, Physical review letters.

[4]  Imre Csiszár,et al.  Broadcast channels with confidential messages , 1978, IEEE Trans. Inf. Theory.

[5]  T. Ralph,et al.  Continuous variable quantum cryptography , 1999, quant-ph/9907073.

[6]  S P Walborn,et al.  Quantum key distribution with higher-order alphabets using spatially encoded qudits. , 2006, Physical review letters.

[7]  Gisin,et al.  Quantum cryptography using entangled photons in energy-time bell states , 1999, Physical review letters.

[8]  P R Tapster,et al.  erratum , 2002, Nature.

[9]  N. Cerf,et al.  Quantum key distribution using gaussian-modulated coherent states , 2003, Nature.

[10]  M. Reid Quantum cryptography with a predetermined key, using continuous-variable Einstein-Podolsky-Rosen correlations , 1999, quant-ph/9909030.

[11]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[12]  Gilles Brassard,et al.  Quantum Cryptography , 2005, Encyclopedia of Cryptography and Security.

[13]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[14]  John C Howell,et al.  Realization of the Einstein-Podolsky-Rosen paradox using momentum- and position-entangled photons from spontaneous parametric down conversion. , 2004, Physical review letters.

[15]  H. Weinfurter,et al.  Free-Space distribution of entanglement and single photons over 144 km , 2006, quant-ph/0607182.

[16]  Reid,et al.  Demonstration of the Einstein-Podolsky-Rosen paradox using nondegenerate parametric amplification. , 1989, Physical review. A, General physics.

[17]  M. Hillery Quantum cryptography with squeezed states , 1999, quant-ph/9909006.

[18]  J H Eberly,et al.  Analysis and interpretation of high transverse entanglement in optical parametric down conversion. , 2004, Physical review letters.

[19]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[20]  Frédéric Grosshans,et al.  Continuous-variable quantum cryptography is secure against non-Gaussian attacks. , 2004, Physical review letters.

[21]  Jeffrey H. Shapiro,et al.  Near-field turbulence effects on quantum-key distribution , 2003 .

[22]  N. Gisin,et al.  Quantum correlations and secret bits. , 2003, Physical review letters.

[23]  C H Monken,et al.  Multimode Hong-Ou-mandel interference. , 2003, Physical review letters.

[24]  Reid,et al.  Quantum correlations of phase in nondegenerate parametric oscillation. , 1988, Physical review letters.

[25]  N. Cerf,et al.  Quantum distribution of Gaussian keys using squeezed states , 2000, quant-ph/0008058.

[26]  Gilles Brassard,et al.  Secret-Key Reconciliation by Public Discussion , 1994, EUROCRYPT.

[27]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[28]  John C Howell,et al.  Large-alphabet quantum key distribution using energy-time entangled bipartite States. , 2007, Physical review letters.

[29]  Charles H. Bennett,et al.  Quantum cryptography using any two nonorthogonal states. , 1992, Physical review letters.

[30]  Robert W. Boyd,et al.  Pixel entanglement: experimental realization of optically entangled d=3 and d=6 qudits. , 2005 .

[31]  H. Weinfurter,et al.  Entanglement-based quantum communication over 144km , 2007 .

[32]  C. G. Peterson,et al.  Fast, efficient error reconciliation for quantum cryptography , 2002, quant-ph/0203096.

[33]  G Leuchs,et al.  Quantum key distribution with bright entangled beams. , 2002, Physical review letters.

[34]  M. P. Almeida,et al.  Experimental investigation of quantum key distribution with position and momentum of photon pairs , 2004, quant-ph/0411183.

[35]  Ueli Maurer,et al.  Generalized privacy amplification , 1994, Proceedings of 1994 IEEE International Symposium on Information Theory.