Efficient spectral computation of the stationary states of rotating Bose-Einstein condensates by preconditioned nonlinear conjugate gradient methods

We propose a preconditioned nonlinear conjugate gradient method coupled with a spectral spatial dis-cretization scheme for computing the ground states (GS) of rotating Bose-Einstein condensates (BEC), modeled by the Gross-Pitaevskii Equation (GPE). We first start by reviewing the classical gradient flow (also known as imaginary time (IMT)) method which considers the problem from the PDE standpoint, leading to numerically solve a dissipative equation. Based on this IMT equation, we analyze the forward Euler (FE), Crank-Nicolson (CN) and the classical backward Euler (BE) schemes for linear problems and recognize classical power iterations, allowing us to derive convergence rates. By considering the alternative point of view of minimization problems, we propose the preconditioned gradient (PG) and conjugate gradient (PCG) methods for the GS computation of the GPE. We investigate the choice of the preconditioner, which plays a key role in the acceleration of the convergence process. The performance of the new algorithms is tested in 1D, 2D and 3D. We conclude that the PCG method outperforms all the previous methods, most particularly for 2D and 3D fast rotating BECs, while being simple to implement.

[1]  C.-S. Chien,et al.  A Two-Parameter Continuation Method for Rotating Two-Component Bose-Einstein Condensates in Optical Lattices , 2013 .

[2]  Bradley,et al.  Evidence of Bose-Einstein Condensation in an Atomic Gas with Attractive Interactions. , 1995, Physical review letters.

[3]  C. E. Wieman,et al.  Vortices in a Bose Einstein condensate , 1999, QELS 2000.

[4]  Yousef Saad,et al.  Numerical Methods for Electronic Structure Calculations of Materials , 2010, SIAM Rev..

[5]  J Dalibard,et al.  Stationary states of a rotating Bose-Einstein condensate: routes to vortex nucleation. , 2001, Physical review letters.

[6]  Xavier Antoine,et al.  GPELab, a Matlab toolbox to solve Gross-Pitaevskii equations II: Dynamics and stochastic simulations , 2015, Comput. Phys. Commun..

[7]  Richard Barrett,et al.  Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods , 1994, Other Titles in Applied Mathematics.

[8]  Levent Tunçel,et al.  Optimization algorithms on matrix manifolds , 2009, Math. Comput..

[9]  Qiang Du,et al.  Computing the Ground State Solution of Bose-Einstein Condensates by a Normalized Gradient Flow , 2003, SIAM J. Sci. Comput..

[10]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[11]  S. Adhikari Numerical solution of the two-dimensional Gross-Pitaevskii equation for trapped interacting atoms , 2000, cond-mat/0001361.

[12]  T. Byrnes,et al.  Macroscopic quantum computation using Bose-Einstein condensates , 2011, 1103.5512.

[13]  W. Ketterle,et al.  Observation of Vortex Lattices in Bose-Einstein Condensates , 2001, Science.

[14]  K. B. Davis,et al.  Bose-Einstein Condensation in a Gas of Sodium Atoms , 1995, EQEC'96. 1996 European Quantum Electronic Conference.

[15]  Weizhu Bao,et al.  A Regularized Newton Method for Computing Ground States of Bose–Einstein Condensates , 2015, Journal of Scientific Computing.

[16]  R. Courant,et al.  On the Partial Difference Equations, of Mathematical Physics , 2015 .

[17]  S. Stringari,et al.  Rapid rotation of a Bose-Einstein condensate in a harmonic plus quartic trap , 2005 .

[18]  Hanquan Wang,et al.  Efficient numerical methods for computing ground states and dynamics of dipolar Bose-Einstein condensates , 2010, J. Comput. Phys..

[19]  Dalibard,et al.  Vortex formation in a stirred bose-einstein condensate , 1999, Physical review letters.

[20]  Xavier Antoine,et al.  Modeling and computation of Bose-Einstein condensates: stationary states, nucleation, dynamics, stochasticity , 2015 .

[21]  Jack Dongarra,et al.  Templates for the Solution of Algebraic Eigenvalue Problems , 2000, Software, environments, tools.

[22]  Ionut Danaila,et al.  A New Sobolev Gradient Method for Direct Minimization of the Gross--Pitaevskii Energy with Rotation , 2009, SIAM J. Sci. Comput..

[23]  T. Arias,et al.  Iterative minimization techniques for ab initio total energy calculations: molecular dynamics and co , 1992 .

[24]  Mechthild Thalhammer,et al.  A minimisation approach for computing the ground state of Gross-Pitaevskii systems , 2009, J. Comput. Phys..

[25]  Christophe Besse,et al.  Communi-cations Computational methods for the dynamics of the nonlinear Schr̈odinger / Gross-Pitaevskii equations , 2013 .

[26]  Ionut Danaila,et al.  A finite element method with mesh adaptivity for computing vortex states in fast-rotating Bose-Einstein condensates , 2010, J. Comput. Phys..

[27]  W. Bao,et al.  MATHEMATICAL THEORY AND NUMERICAL METHODS FOR , 2012 .

[28]  Alan Edelman,et al.  The Geometry of Algorithms with Orthogonality Constraints , 1998, SIAM J. Matrix Anal. Appl..

[29]  Andrew V. Knyazev,et al.  Toward the Optimal Preconditioned Eigensolver: Locally Optimal Block Preconditioned Conjugate Gradient Method , 2001, SIAM J. Sci. Comput..

[30]  C. Wieman,et al.  Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor , 1995, Science.

[31]  Eric Cancès,et al.  Ground state of the time-independent Gross-Pitaevskii equation , 2007, Comput. Phys. Commun..

[32]  Succi,et al.  Ground state of trapped interacting bose-einstein condensates by an explicit imaginary-time algorithm , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[33]  C. Yuce,et al.  Off-axis vortex in a rotating dipolar Bose–Einstein condensate , 2010, 1005.3725.

[34]  Weizhu Bao Ground States and Dynamics of Multicomponent Bose-Einstein Condensates , 2004, Multiscale Model. Simul..

[35]  E. Cancès,et al.  Computational quantum chemistry: A primer , 2003 .

[36]  Yannick Seurin,et al.  Fast rotation of a Bose-Einstein condensate. , 2004, Physical review letters.

[37]  Xavier Antoine,et al.  GPELab, a Matlab toolbox to solve Gross-Pitaevskii equations I: Computation of stationary solutions , 2014, Comput. Phys. Commun..

[38]  Weizhu Bao,et al.  Ground-state solution of Bose--Einstein condensate by directly minimizing the energy functional , 2003 .

[39]  Xingyu Gao,et al.  On the Preconditioning Function Used in Planewave DFT Calculations and its Generalization , 2015 .

[40]  Xavier Antoine,et al.  Robust and efficient preconditioned Krylov spectral solvers for computing the ground states of fast rotating and strongly interacting Bose-Einstein condensates , 2014, J. Comput. Phys..

[41]  Weizhu Bao,et al.  Computing the ground state and dynamics of the nonlinear Schrödinger equation with nonlocal interactions via the nonuniform FFT , 2014, J. Comput. Phys..

[42]  D. Baye,et al.  Resolution of the Gross-Pitaevskii equation with the imaginary-time method on a Lagrange mesh. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[43]  Succi,et al.  Numerical solution of the gross-pitaevskii equation using an explicit finite-difference scheme: An application to trapped bose-einstein condensates , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[44]  Rong Zeng,et al.  Efficiently computing vortex lattices in rapid rotating Bose-Einstein condensates , 2009, Comput. Phys. Commun..

[45]  C.-S. Chien,et al.  A two-parameter continuation algorithm for vortex pinning in rotating Bose-Einstein condensates , 2013, Comput. Phys. Commun..

[46]  W. Ketterle,et al.  Vortex nucleation in a stirred Bose-Einstein condensate. , 2001, Physical review letters.

[47]  F. Dalfovo,et al.  Theory of Bose-Einstein condensation in trapped gases , 1998, cond-mat/9806038.

[48]  Weizhu Bao,et al.  Ground States of Two-component Bose-Einstein Condensates with an Internal Atomic Josephson Junction , 2011 .

[49]  Allan,et al.  Solution of Schrödinger's equation for large systems. , 1989, Physical review. B, Condensed matter.

[50]  D. Sorensen Numerical methods for large eigenvalue problems , 2002, Acta Numerica.