Abstracting Markov Networks

In this paper we describe a preliminary investigation on the use of abstraction operators to reduce the complexity of inference in Markov Networks. More specifically, we are interested in Logic Markov Network, where the use of abstraction may be a complementary approach to lifted inference.

[1]  Pedro M. Domingos,et al.  Memory-Efficient Inference in Relational Domains , 2006, AAAI.

[2]  Jean-Daniel Zucker,et al.  Abstracting Complex Interaction Networks , 2009, SARA.

[3]  Xiang-Sun Zhang,et al.  Graph kernels, hierarchical clustering, and network community structure: experiments and comparative analysis , 2007 .

[4]  Stuart J. Russell,et al.  General-Purpose MCMC Inference over Relational Structures , 2006, UAI.

[5]  Nathan R. Sturtevant,et al.  Graph Abstraction in Real-time Heuristic Search , 2007, J. Artif. Intell. Res..

[6]  Pedro M. Domingos,et al.  Lifted First-Order Belief Propagation , 2008, AAAI.

[7]  Brendan J. Frey,et al.  Factor graphs and the sum-product algorithm , 2001, IEEE Trans. Inf. Theory.

[8]  Alex Arenas,et al.  Analysis of the structure of complex networks at different resolution levels , 2007, physics/0703218.

[9]  Susan L. Epstein,et al.  Cluster Graphs as Abstractions for Constraint Satisfaction Problems , 2009, SARA.

[10]  M. Newman,et al.  Hierarchical structure and the prediction of missing links in networks , 2008, Nature.

[11]  Sebastian Riedel Improving the Accuracy and Efficiency of MAP Inference for Markov Logic , 2008, UAI.

[12]  Dan Roth,et al.  Lifted First-Order Probabilistic Inference , 2005, IJCAI.

[13]  Pedro M. Domingos,et al.  Sound and Efficient Inference with Probabilistic and Deterministic Dependencies , 2006, AAAI.

[14]  Pedro M. Domingos,et al.  A General Method for Reducing the Complexity of Relational Inference and its Application to MCMC , 2008, AAAI.

[15]  David Poole,et al.  First-order probabilistic inference , 2003, IJCAI.

[16]  Robert C. Holte,et al.  Speeding up Problem Solving by Abstraction: A Graph Oriented Approach , 1996, Artif. Intell..

[17]  Christopher M. Bishop,et al.  Pattern Recognition and Machine Learning (Information Science and Statistics) , 2006 .

[18]  Sriraam Natarajan,et al.  Speeding Up Inference in Markov Logic Networks by Preprocessing to Reduce the Size of the Resulting Grounded Network , 2009, IJCAI.

[19]  Matthew Richardson,et al.  Markov logic networks , 2006, Machine Learning.

[20]  Nasser M. Nasrabadi,et al.  Pattern Recognition and Machine Learning , 2006, Technometrics.