Adaptive Robust Stabilization of Rossler System With Time-Varying Mismatched Parameters Via Scalar Input

[1]  Xinghuo Yu,et al.  Adaptive control of chaotic dynamical systems using invariant manifold approach , 2000 .

[2]  H. Troger,et al.  Suppressing chaos in the duffing oscillator by impulsive actions , 1998 .

[3]  Ma Jun Hai,et al.  Improved piece-wise linear and nonlinear synchronization of a class of discrete chaotic systems , 2010, Int. J. Comput. Math..

[4]  Z. Qu Global stabilization of nonlinear systems with a class of unmatched uncertainties , 1992 .

[5]  Mohammad Mahdi Arefi,et al.  Adaptive Robust control of Hyperchaotic Rossler system in the presence of matching disturbance , 2009 .

[6]  Subir Das,et al.  Projective synchronization of time‒delayed chaotic systems with unknown parameters using adaptive control method , 2015 .

[7]  Manuel A. Duarte-Mermoud,et al.  Adaptive stabilization of linear and nonlinear plants in the presence of large and arbitrarily fast variations of the parameters , 2009, J. Frankl. Inst..

[8]  An-Pei Wang,et al.  Controlling hyperchaos of the Rossler system , 1999 .

[9]  Qunjiao Zhang,et al.  Robust synchronization of FitzHugh–Nagumo network with parameter disturbances by sliding mode control , 2014 .

[10]  Junwei Wang,et al.  H∞ control of a chaotic finance system in the presence of external disturbance and input time-delay , 2014, Appl. Math. Comput..

[11]  Da Lin,et al.  Dynamic fuzzy neural networks modeling and adaptive backstepping tracking control of uncertain chaotic systems , 2010, Neurocomputing.

[12]  Mohammad Mahdi Arefi,et al.  Adaptive robust stabilization of a class of uncertain non-linear systems with mismatched time-varying parameters , 2012, J. Syst. Control. Eng..

[13]  Mohammad R. Jahed-Motlagh,et al.  Robust synchronization of Rossler systems with mismatched time-varying parameters , 2012 .

[14]  F. M. Kakmeni,et al.  Chaos control using small-amplitude damping signals of the extended Duffing equation , 2007 .

[15]  Ying-Cheng Lai,et al.  Controlling chaos , 1994 .

[16]  Ju H. Park,et al.  A novel criterion for delayed feedback control of time-delay chaotic systems , 2005 .

[17]  A. Isidori Nonlinear Control Systems , 1985 .

[18]  Da Lin,et al.  Observer-based decentralized fuzzy neural sliding mode control for interconnected unknown chaotic systems via network structure adaptation , 2010, Fuzzy Sets Syst..

[19]  Chongzhao Han,et al.  Robust adaptive tracking control for a class of uncertain chaotic systems , 2003 .

[20]  J. Yan,et al.  H 8 controlling hyperchaos of the Rssler system with input nonlinearity , 2004 .

[21]  Manuel A. Duarte-Mermoud,et al.  Simplified robust adaptive control of a class of time‐varying chaotic systems , 2008 .

[22]  F. Dou,et al.  Controlling hyperchaos in the new hyperchaotic system , 2009 .

[23]  Ming-Jyi Jang,et al.  Sliding mode control of hyperchaos in Rössler systems , 2002 .

[24]  Mohammad Mehdi Arefi,et al.  Adaptive robust synchronization of Rossler systems in the presence of unknown matched time-varying parameters , 2010 .

[25]  Xingyuan Wang,et al.  A hyperchaos generated from Lorenz system , 2008 .

[26]  Riccardo Marino,et al.  Nonlinear control design: geometric, adaptive and robust , 1995 .

[27]  Da Lin,et al.  Self-organizing adaptive fuzzy neural control for the synchronization of uncertain chaotic systems with random-varying parameters , 2011, Neurocomputing.

[28]  Ricardo Femat,et al.  An extension to chaos control via Lie derivatives: Fully linearizable systems. , 2002, Chaos.

[29]  Her-Terng Yau,et al.  Robust controlling hyperchaos of the Rössler system subject to input nonlinearities by using sliding mode control , 2007 .

[30]  Hao Zhang,et al.  Controlling and tracking hyperchaotic Rössler system via active backstepping design , 2005 .