Narrow-line cooling of 87Rb using 5S 1/2→ 6P 3/2 open transition at 420 nm

A magneto-optical trap (MOT) at narrow transition offers lower temperature and hence is the key for producing a high phase density atomic cloud and subsequently quantum degeneracy with a large number of atoms for many elements. In this paper, we describe the loading of 87Rb atoms in the MOT using a narrow open transition (5S 1/2→ 6P 3/2 ) at 420 nm (i.e. blue MOT) from the routinely implemented MOT using a broad cyclic transition (5S 1/2→ 5P 3/2 ) at 780 nm (i.e. IR MOT). Using the four times narrower transition, we have trapped around 108 atoms in the MOT with a typical temperature of around 54 μ K. We have also studied the behavior of the blue MOT with various parameters such as hold time, detuning, and power of trapping and repumper beams.

[1]  M. Kozuma,et al.  Narrow-line magneto-optical trap for europium , 2021, Physical Review A.

[2]  K. Pandey,et al.  Resolving closely spaced levels for Doppler mismatched double resonance , 2021, Physical Review A.

[3]  S. Du,et al.  Efficient production of a narrow-line erbium magneto-optical trap with two-stage slowing , 2020, Physical Review A.

[4]  V. Natarajan,et al.  Hyperfine measurement of the 6P1/2 state in 87Rb using double resonance on blue and IR transition , 2020, Journal of Physics B: Atomic, Molecular and Optical Physics.

[5]  J. Grimmel,et al.  Absolute frequency measurement of rubidium 5S−6P transitions , 2019, 1905.08824.

[6]  K. Gibble,et al.  Narrow-line Cooling and Determination of the Magic Wavelength of Cd. , 2019, Physical review letters.

[7]  K. Dieckmann,et al.  Comparison of an efficient implementation of gray molasses to narrow-line cooling for the all-optical production of a lithium quantum gas , 2018, Physical Review A.

[8]  M. H. Johnson,et al.  Sub-Doppler laser cooling of fermionic 40 K atoms in three-dimensional gray optical molasses , 2017 .

[9]  C. Kwong Coherent transmission of light through a cold atomic cloud , 2017 .

[10]  M. H. Johnson,et al.  Sub-Doppler laser cooling of 40K with Raman gray molasses on the D 2 line , 2016, 1612.04583.

[11]  K. Pandey,et al.  A high flux source of cold strontium atoms , 2015, 1505.04507.

[12]  C. Gross,et al.  Two-stage magneto-optical trapping and narrow-line cooling of Li6 atoms to high phase-space density , 2014, 1409.2350.

[13]  T. Maier,et al.  Narrow-line magneto-optical trap for dysprosium atoms. , 2014, Optics letters.

[14]  A. Aspect,et al.  Gray-molasses cooling of 39K to a high phase-space density , 2013, 1310.4014.

[15]  C. Unnikrishnan,et al.  Quantum interference-enhanced deep sub-Doppler cooling of 39 K atoms in gray molasses , 2013, 1305.5480.

[16]  E. Zupanič,et al.  Narrow-line magneto-optical trap for erbium , 2012, 1203.1460.

[17]  D. McKay,et al.  Low-temperature high-density magneto-optical trapping of potassium using the open 4S{yields}5P transition at 405 nm , 2011, 1110.4067.

[18]  T. Corcovilos,et al.  All-optical production of a lithium quantum gas using narrow-line laser cooling , 2011, 1109.6635.

[19]  B. Lev,et al.  Spectroscopy of a narrow-line laser-cooling transition in atomic dysprosium , 2010, 1009.2962.

[20]  A. Singh,et al.  Atomic fountain of laser-cooled Yb atoms for precision measurements , 2010, 1008.3224.

[21]  S. Cornish,et al.  Optimization of sub-Doppler DAVLL on the rubidium D2 line , 2008 .

[22]  A. Berglund,et al.  Narrow-line magneto-optical cooling and trapping of strongly magnetic atoms. , 2008, Physical review letters.

[23]  C. Clark,et al.  Relativistic many-body calculations of electric-dipole matrix elements, lifetimes, and polarizabilities in rubidium , 2003, physics/0307057.

[24]  E. A. Curtis,et al.  Quenched narrow-line second- and third-stage laser cooling of 40 Ca , 2002, physics/0208071.

[25]  E. A. Curtis,et al.  Quenched narrow-line laser cooling of 40 Ca to near the photon recoil limit , 2001, physics/0104061.

[26]  K. Honda,et al.  Magneto-optical trapping of Yb atoms using an intercombination transition , 1999 .

[27]  Tetsuya Ido,et al.  Magneto-Optical Trapping and Cooling of Strontium Atoms down to the Photon Recoil Temperature , 1999 .