Engineering spatial coherence in lattices of polariton condensates

Artificial lattices of coherently coupled macroscopic states are at the heart of applications ranging from solving hard combinatorial optimisation problems to simulating complex many-body physical systems. The size and complexity of the problems scales with the extent of coherence across the lattice. Although the fundamental limit of spatial coherence depends on the nature of the couplings and lattice parameters, it is usually engineering constrains that define the size of the system. Here, we engineer polariton condensate lattices with active control on the spatial arrangement and condensate density that result in near-diffraction limited emission, and spatial coherence that exceeds by nearly two orders of magnitude the size of each individual condensate. We utilise these advancements to unravel the dependence of spatial correlations between polariton condensates on the lattice geometry.

[1]  P. Lagoudakis,et al.  Optical Control of Couplings in Polariton Condensate Lattices. , 2020, Physical review letters.

[2]  P. Lagoudakis,et al.  Synthetic band-structure engineering in polariton crystals with non-Hermitian topological phases , 2020, Nature Communications.

[3]  D. Ballarini,et al.  Polaritonic neuromorphic computing outperforms linear classifiers , 2019, Nano letters.

[4]  D. Budker,et al.  Relaxion stars and their detection via atomic physics , 2019, Communications Physics.

[5]  Natalia G. Berloff,et al.  Networks of non-equilibrium condensates for global optimization , 2018, New Journal of Physics.

[6]  J. Baumberg,et al.  Synchronization crossover of polariton condensates in weakly disordered lattices , 2018, Physical Review B.

[7]  Damien Querlioz,et al.  Vowel recognition with four coupled spin-torque nano-oscillators , 2017, Nature.

[8]  Frank Vewinger,et al.  Variable potentials for thermalized light and coupled condensates , 2017, Nature Photonics.

[9]  I. Carusotto,et al.  Unstable and stable regimes of polariton condensation , 2017, Optica.

[10]  K. West,et al.  Topological order and thermal equilibrium in polariton condensates. , 2016, Nature materials.

[11]  J. Bloch,et al.  Exciton-polaritons in lattices: A non-linear photonic simulator , 2016 .

[12]  P. Lagoudakis,et al.  Realizing the classical XY Hamiltonian in polariton simulators. , 2016, Nature materials.

[13]  Qing Hu,et al.  Phase-locked laser arrays through global antenna mutual coupling , 2016, Nature Photonics.

[14]  Sandro Stringari,et al.  Bose-Einstein condensation and superfluidity , 2016 .

[15]  Michal Lipson,et al.  Synchronization and Phase Noise Reduction in Micromechanical Oscillator Arrays Coupled through Light. , 2015, Physical review letters.

[16]  F. Nori,et al.  Observation of non-Hermitian degeneracies in a chaotic exciton-polariton billiard , 2015, Nature.

[17]  P. Lagoudakis,et al.  Dissipative phase locking of exciton-polariton condensates , 2014, 1406.6377.

[18]  J. Baumberg,et al.  Optical superfluid phase transitions and trapping of polariton condensates. , 2013, Physical review letters.

[19]  M. C. Soriano,et al.  Complex photonics: Dynamics and applications of delay-coupled semiconductors lasers , 2013 .

[20]  I. Carusotto,et al.  Non-equilibrium quasi-condensates in reduced dimensions , 2013, 1302.6158.

[21]  Seth A. Myers,et al.  Spontaneous synchrony in power-grid networks , 2013, Nature Physics.

[22]  Sven Höfling,et al.  Power-law decay of the spatial correlation function in exciton-polariton condensates , 2012, Proceedings of the National Academy of Sciences.

[23]  J. Dalibard,et al.  Quantum simulations with ultracold quantum gases , 2012, Nature Physics.

[24]  J. Baumberg,et al.  Sculpting oscillators with light within a nonlinear quantum fluid , 2011, Nature Physics.

[25]  R. Le Targat,et al.  Quantum Simulation of Frustrated Classical Magnetism in Triangular Optical Lattices , 2011, Science.

[26]  B. Piętka,et al.  Polariton condensation in a one-dimensional disordered potential. , 2011, Physical review letters.

[27]  Asher A. Friesem,et al.  Passive phase locking of 25 fiber lasers. , 2010, Optics letters.

[28]  Isabelle Sagnes,et al.  Spontaneous formation and optical manipulation of extended polariton condensates , 2010, 1004.4084.

[29]  M. S. Skolnick,et al.  Coexisting nonequilibrium condensates with long-range spatial coherence in semiconductor microcavities , 2009, 0903.1570.

[30]  V. Savona,et al.  Stochastic classical field model for polariton condensates , 2008, 0811.4567.

[31]  I. Carusotto,et al.  Spatial and spectral shape of inhomogeneous nonequilibrium exciton-polariton condensates , 2007, 0707.1016.

[32]  G. Solomon,et al.  Spatial coherence of a polariton condensate. , 2007, Physical review letters.

[33]  I. Carusotto,et al.  Excitations in a nonequilibrium Bose-Einstein condensate of exciton polaritons. , 2007, Physical review letters.

[34]  V. Savona,et al.  Bose–Einstein condensation of exciton polaritons , 2006, Nature.

[35]  J. Dalibard,et al.  Berezinskii–Kosterlitz–Thouless crossover in a trapped atomic gas , 2006, Nature.

[36]  P. Littlewood,et al.  Nonequilibrium quantum condensation in an incoherently pumped dissipative system. , 2006, Physical review letters.

[37]  M. Oberthaler,et al.  Dynamics of Bose-Einstein condensates in optical lattices , 2006 .

[38]  Edward Ott,et al.  Theoretical mechanics: Crowd synchrony on the Millennium Bridge , 2005, Nature.

[39]  Heidi M. Rockwood,et al.  Huygens's clocks , 2002, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[40]  S. Strogatz Exploring complex networks , 2001, Nature.

[41]  E. Kapon,et al.  Strain effects and phase transitions in photonic resonator crystals , 2000, Nature.

[42]  E. Kapon,et al.  PHOTON MODE LOCALIZATION IN DISORDERED ARRAYS OF VERTICAL CAVITY SURFACE EMITTING LASERS , 1999 .

[43]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[44]  E Kapon,et al.  Photon localization in lattices of coupled vertical-cavity surface-emitting lasers with dimensionalities between one and two. , 1997, Optics letters.

[45]  W. Singer,et al.  Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties , 1989, Nature.

[46]  Proceedings of the Royal Society (London) , 1906, Science.

[47]  A. Pikovsky,et al.  Synchronization: Theory and Application , 2003 .

[48]  J. Kurths,et al.  Synchronization: A Universal Concept in Nonlinear Sciences , 2001 .

[49]  E. B. Wilson,et al.  PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES. , 1916, Science.