Lipids modulate the conformational dynamics of a secondary multidrug transporter

Direct interactions with lipids have emerged as key determinants of the folding, structure and function of membrane proteins, but an understanding of how lipids modulate protein dynamics is still lacking. Here, we systematically explored the effects of lipids on the conformational dynamics of the proton-powered multidrug transporter LmrP from Lactococcus lactis, using the pattern of distances between spin-label pairs previously shown to report on alternating access of the protein. We uncovered, at the molecular level, how the lipid headgroups shape the conformational-energy landscape of the transporter. The model emerging from our data suggests a direct interaction between lipid headgroups and a conserved motif of charged residues that control the conformational equilibrium through an interplay of electrostatic interactions within the protein. Together, our data lay the foundation for a comprehensive model of secondary multidrug transport in lipid bilayers.

[1]  R. Pepperkok,et al.  Molecular recognition of a single sphingolipid species by a protein’s transmembrane domain , 2012, Nature.

[2]  N. Dencher,et al.  Cardiolipin: a proton trap for oxidative phosphorylation , 2002, FEBS letters.

[3]  C. Robinson,et al.  A tandem mass spectrometer for improved transmission and analysis of large macromolecular assemblies. , 2002, Analytical chemistry.

[4]  M. Kates,et al.  pH-dissociation characteristics of cardiolipin and its 2′-deoxy analogue , 1993, Lipids.

[5]  A. Lee,et al.  Lipid-protein interactions in biological membranes: a structural perspective. , 2003, Biochimica et biophysica acta.

[6]  I. Pastan,et al.  Biochemistry of multidrug resistance mediated by the multidrug transporter. , 1993, Annual review of biochemistry.

[7]  J. Whitelegge,et al.  Dissection of mechanistic principles of a secondary multidrug efflux protein. , 2012, Molecular cell.

[8]  H. Mchaourab,et al.  Structure and pH-induced structural rearrangements of the putative multidrug efflux pump EmrD in liposomes probed by site-directed spin labeling. , 2013, Biochemistry.

[9]  S. Schuldiner EmrE, a model for studying evolution and mechanism of ion-coupled transporters. , 2009, Biochimica et biophysica acta.

[10]  Emad Tajkhorshid,et al.  Conformational dynamics of the nucleotide binding domains and the power stroke of a heterodimeric ABC transporter , 2014, eLife.

[11]  R. Cantor,et al.  The influence of membrane lateral pressures on simple geometric models of protein conformational equilibria. , 1999, Chemistry and physics of lipids.

[12]  H. Weinstein,et al.  Phosphatidylinositol 4,5-Biphosphate (PIP2) Lipids Regulate the Phosphorylation of Syntaxin N-Terminus by Modulating Both Its Position and Local Structure , 2012, Biochemistry.

[13]  Xuehui Liu,et al.  Structure of the YajR transporter suggests a transport mechanism based on the conserved motif A , 2013, Proceedings of the National Academy of Sciences.

[14]  Vadim Cherezov,et al.  A specific cholesterol binding site is established by the 2.8 A structure of the human beta2-adrenergic receptor. , 2008, Structure.

[15]  G. Goma,et al.  Influence of pH, lactose and lactic acid on the growth of Streptococcus cremoris: a kinetic study , 1988, Applied Microbiology and Biotechnology.

[16]  H. V. van Veen,et al.  A flexible cation binding site in the multidrug major facilitator superfamily transporter LmrP is associated with variable proton coupling , 2010, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[17]  C. Hunte,et al.  Lipids and membrane protein structures. , 2008, Current opinion in structural biology.

[18]  A. Driessen,et al.  Lipid requirement of the branched-chain amino acid transport system of Streptococcus cremoris. , 1988, Biochemistry.

[19]  Carol V. Robinson,et al.  Mass Spectrometry of Intact V-Type ATPases Reveals Bound Lipids and the Effects of Nucleotide Binding , 2011, Science.

[20]  K. Adamberg,et al.  The effect of temperature and pH on the growth of lactic acid bacteria: a pH-auxostat study. , 2003, International journal of food microbiology.

[21]  S. Sligar,et al.  Self‐assembly of single integral membrane proteins into soluble nanoscale phospholipid bilayers , 2003, Protein science : a publication of the Protein Society.

[22]  M. Lensink,et al.  Identification of Specific Lipid-binding Sites in Integral Membrane Proteins* , 2010, The Journal of Biological Chemistry.

[23]  Ben M. Webb,et al.  Comparative Protein Structure Modeling Using Modeller , 2006, Current protocols in bioinformatics.

[24]  M. Putman,et al.  The secondary multidrug transporter LmrP contains multiple drug interaction sites. , 1999, Biochemistry.

[25]  Paul A. Wiggins,et al.  Emerging roles for lipids in shaping membrane-protein function , 2009, Nature.

[26]  S. Iwata,et al.  Structural determination of wild-type lactose permease , 2007, Proceedings of the National Academy of Sciences.

[27]  Anthony G. Lee Lipid-protein interactions. , 2011, Biochemical Society transactions.

[28]  Ben M. Webb,et al.  Comparative Protein Structure Modeling Using MODELLER , 2007, Current protocols in protein science.

[29]  A. Driessen,et al.  Energetics and Mechanism of Drug Transport Mediated by the Lactococcal Multidrug Transporter LmrP* , 1996, The Journal of Biological Chemistry.

[30]  S. Singer,et al.  The fluid mosaic model of the structure of cell membranes. , 1972, Science.

[31]  Richard A Stein,et al.  A Straightforward Approach to the Analysis of Double Electron-Electron Resonance Data. , 2015, Methods in enzymology.

[32]  G. Jeschke,et al.  Distance measurements on spin-labelled biomacromolecules by pulsed electron paramagnetic resonance. , 2007, Physical chemistry chemical physics : PCCP.

[33]  G. Jeschke,et al.  Dead-time free measurement of dipole-dipole interactions between electron spins. , 2000, Journal of magnetic resonance.

[34]  B. Kobilka,et al.  Allosteric regulation of G protein-coupled receptor activity by phospholipids. , 2016, Nature chemical biology.

[35]  B. Trumpower,et al.  Specific roles of protein–phospholipid interactions in the yeast cytochrome bc1 complex structure , 2001, The EMBO journal.

[36]  I. Piskarev,et al.  Kinetic study , 2013 .

[37]  Terry K. Smith,et al.  The role of lipids in mechanosensation , 2015, Nature Structural &Molecular Biology.

[38]  D. Engelman,et al.  Introduction to the membrane protein reviews: the interplay of structure, dynamics, and environment in membrane protein function. , 2006, Annual review of biochemistry.

[39]  J. East,et al.  Anionic phospholipids affect the rate and extent of flux through the mechanosensitive channel of large conductance MscL. , 2008, Biochemistry.

[40]  A. Barr,et al.  Structures of ABCB10, a human ATP-binding cassette transporter in apo- and nucleotide-bound states , 2013, Proceedings of the National Academy of Sciences.

[41]  R. Tampé,et al.  A subset of annular lipids is linked to the flippase activity of an ABC transporter. , 2015, Nature chemistry.

[42]  Anton Meinhart,et al.  A structural perspective of CTD function. , 2005, Genes & development.

[43]  W. J. Dyer,et al.  A rapid method of total lipid extraction and purification. , 1959, Canadian journal of biochemistry and physiology.

[44]  H. Nury,et al.  Structural basis for lipid‐mediated interactions between mitochondrial ADP/ATP carrier monomers , 2005, FEBS letters.

[45]  William Dowhan,et al.  Lipid-protein interactions as determinants of membrane protein structure and function. , 2011, Biochemical Society transactions.

[46]  Edmund R. S. Kunji,et al.  Structures of yeast mitochondrial ADP/ATP carriers support a domain-based alternating-access transport mechanism , 2014, Proceedings of the National Academy of Sciences.

[47]  M. Putman,et al.  Molecular Properties of Bacterial Multidrug Transporters , 2000, Microbiology and Molecular Biology Reviews.

[48]  J. East,et al.  Importance of direct interactions with lipids for the function of the mechanosensitive channel MscL. , 2008, Biochemistry.

[49]  H. Weinstein,et al.  Functional mechanisms of neurotransmitter transporters regulated by lipid-protein interactions of their terminal loops. , 2015, Biochimica et biophysica acta.

[50]  C. Eyers,et al.  The power of ion mobility-mass spectrometry for structural characterization and the study of conformational dynamics. , 2014, Nature chemistry.

[51]  Richard A Stein,et al.  Protonation drives the conformational switch in the multidrug transporter LmrP. , 2014, Nature chemical biology.

[52]  Hassane S Mchaourab,et al.  Navigating Membrane Protein Structure, Dynamics, and Energy Landscapes Using Spin Labeling and EPR Spectroscopy. , 2015, Methods in enzymology.

[53]  G. L. Hazelbauer,et al.  Using Nanodiscs to create water-soluble transmembrane chemoreceptors inserted in lipid bilayers. , 2007, Methods in enzymology.

[54]  M. Putman,et al.  The lactococcal secondary multidrug transporter LmrP confers resistance to lincosamides, macrolides, streptogramins and tetracyclines. , 2001, Microbiology.

[55]  I. Paulsen,et al.  Multidrug resistance proteins QacA and QacB from Staphylococcus aureus: membrane topology and identification of residues involved in substrate specificity. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[56]  M. Bogdanov,et al.  Proper Fatty Acid Composition Rather than an Ionizable Lipid Amine Is Required for Full Transport Function of Lactose Permease from Escherichia coli* , 2013, The Journal of Biological Chemistry.

[57]  B. Poolman,et al.  Restrictive use of detergents in the functional reconstitution of the secondary multidrug transporter LmrP. , 1999, Biochemistry.

[58]  H. Weinstein,et al.  PIP2 regulates psychostimulant behaviors through its interaction with a membrane protein , 2014, Nature chemical biology.

[59]  G. Heijne The distribution of positively charged residues in bacterial inner membrane proteins correlates with the trans‐membrane topology , 1986, The EMBO journal.

[60]  J. Ruysschaert,et al.  Interactions between Phosphatidylethanolamine Headgroup and LmrP, a Multidrug Transporter , 2008, Journal of Biological Chemistry.

[61]  H. Zimmermann,et al.  DeerAnalysis2006—a comprehensive software package for analyzing pulsed ELDOR data , 2006 .

[62]  H. Gong,et al.  Structure of a fucose transporter in an outward-open conformation , 2010, Nature.

[63]  Albert H Beth,et al.  The global analysis of DEER data. , 2011, Journal of magnetic resonance.

[64]  Conrad C. Huang,et al.  UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..

[65]  G. Kaatz,et al.  Inducible NorA-mediated multidrug resistance in Staphylococcus aureus , 1995, Antimicrobial agents and chemotherapy.

[66]  C. Robinson,et al.  Membrane proteins bind lipids selectively to modulate their structure and function , 2014, Nature.

[67]  A. Driessen,et al.  Energetics of wild-type and mutant multidrug resistance secondary transporter LmrP of Lactococcus lactis. , 2004, Biochimica et biophysica acta.

[68]  T. Haines A new look at Cardiolipin. , 2009, Biochimica et biophysica acta.

[69]  S. Sligar,et al.  Thermotropic phase transition in soluble nanoscale lipid bilayers. , 2005, The journal of physical chemistry. B.

[70]  G. Chang,et al.  Structure of the Multidrug Transporter EmrD from Escherichia coli , 2006, Science.

[71]  Michiel Kleerebezem,et al.  10 years of the nisin-controlled gene expression system (NICE) in Lactococcus lactis , 2005, Applied Microbiology and Biotechnology.

[72]  I. Paulsen,et al.  Major Facilitator Superfamily , 1998, Microbiology and Molecular Biology Reviews.

[73]  M. McNamee,et al.  Lipid-protein interactions in reconstituted membranes containing acetylcholine receptor. , 1983, Biochemistry.

[74]  J. Thompson,et al.  CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. , 1994, Nucleic acids research.

[75]  J. González-Ros,et al.  Role of cholesterol as a structural and functional effector of the nicotinic acetylcholine receptor. , 1994, Biochemical Society transactions.

[76]  T. Wilson,et al.  The phospholipid requirement for activity of the lactose carrier of Escherichia coli. , 1984, The Journal of biological chemistry.

[77]  A. Driessen,et al.  Proton motive force mediates a reorientation of the cytosolic domains of the multidrug transporter LmrP , 2004, Cellular and Molecular Life Sciences CMLS.

[78]  Pekka A. Postila,et al.  Atomistic simulations indicate cardiolipin to have an integral role in the structure of the cytochrome bc1 complex. , 2013, Biochimica et biophysica acta.

[79]  Gunnar Jeschke,et al.  DEER distance measurements on proteins. , 2012, Annual review of physical chemistry.