Multiple pathways for sorting mitochondrial precursor proteins

Mitochondria import hundreds of different precursor proteins from the cytosol. More than 50% of mitochondrial proteins do not use the classical import pathway that is guided by amino‐terminal presequences, but instead contain different types of internal targeting signals. Recent studies have revealed an unexpected complexity of the mitochondrial protein import machinery and have led to the discovery of new transport pathways. Here, we review the versatility of mitochondrial protein import and its connection to mitochondrial morphology, redox regulation and energetics.

[1]  N. Pfanner,et al.  The morphology proteins Mdm12/Mmm1 function in the major β‐barrel assembly pathway of mitochondria , 2007, The EMBO journal.

[2]  Wolfgang Voos,et al.  Mitochondrial Import Driving Forces: Enhanced Trapping by Matrix Hsp70 Stimulates Translocation and Reduces the Membrane Potential Dependence of Loosely Folded Preproteins , 2001, Molecular and Cellular Biology.

[3]  David K. Hwang,et al.  The Role of Hot13p and Redox Chemistry in the Mitochondrial TIM22 Import Pathway* , 2004, Journal of Biological Chemistry.

[4]  E. Craig,et al.  Role of Pam16's degenerate J domain in protein import across the mitochondrial inner membrane. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[5]  Rudolf Volkmer,et al.  The Tim21 binding domain connects the preprotein translocases of both mitochondrial membranes , 2006, EMBO reports.

[6]  C. Kozany,et al.  A Disulfide Relay System in the Intermembrane Space of Mitochondria that Mediates Protein Import , 2005, Cell.

[7]  F. Nargang,et al.  The Tim8-Tim13 Complex of Neurospora crassa Functions in the Assembly of Proteins into Both Mitochondrial Membranes* , 2004, Journal of Biological Chemistry.

[8]  Albert Sickmann,et al.  The proteome of Saccharomyces cerevisiae mitochondria , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[9]  B. Schönfisch,et al.  Machinery for protein sorting and assembly in the mitochondrial outer membrane , 2003, Nature.

[10]  S. Ghosal,et al.  The force exerted by the membrane potential during protein import into the mitochondrial matrix. , 2004, Biophysical journal.

[11]  R. Lill,et al.  An essential function of the mitochondrial sulfhydryl oxidase Erv1p/ALR in the maturation of cytosolic Fe/S proteins , 2001, EMBO reports.

[12]  Nicholas J. Hoogenraad,et al.  Molecular Chaperones Hsp90 and Hsp70 Deliver Preproteins to the Mitochondrial Import Receptor Tom70 , 2003, Cell.

[13]  N. Pfanner,et al.  The Presequence Translocase-associated Protein Import Motor of Mitochondria , 2004, Journal of Biological Chemistry.

[14]  N. Pfanner,et al.  The Mitochondrial Presequence Translocase An Essential Role of Tim50 in Directing Preproteins to the Import Channel , 2002, Cell.

[15]  N. Pfanner,et al.  Biogenesis of the Protein Import Channel Tom40 of the Mitochondrial Outer Membrane , 2004, Journal of Biological Chemistry.

[16]  R. Casadio,et al.  Preprotein translocase of the outer mitochondrial membrane: reconstituted Tom40 forms a characteristic TOM pore. , 2005, Journal of molecular biology.

[17]  A. Merlin,et al.  A presequence- and voltage-sensitive channel of the mitochondrial preprotein translocase formed by Tim23 , 2001, Nature Structural Biology.

[18]  K. Mihara,et al.  Cytosolic factor‐ and TOM‐independent import of C‐tail‐anchored mitochondrial outer membrane proteins , 2006, The EMBO journal.

[19]  N. Pfanner,et al.  A Role for Tim21 in Membrane-Potential-Dependent Preprotein Sorting in Mitochondria , 2006, Current Biology.

[20]  J. Gulbis,et al.  Crystal structure of the mitochondrial chaperone TIM9.10 reveals a six-bladed alpha-propeller. , 2006, Molecular cell.

[21]  D. Mokranjac,et al.  Structure and function of Tim14 and Tim16, the J and J‐like components of the mitochondrial protein import motor , 2006, The EMBO journal.

[22]  D. Kohda,et al.  Structural Basis of Presequence Recognition by the Mitochondrial Protein Import Receptor Tom20 , 2000, Cell.

[23]  J. Sheehan,et al.  Assembly of Tim9 and Tim10 into a Functional Chaperone* , 2002, The Journal of Biological Chemistry.

[24]  N. Pfanner,et al.  The three modules of ADP/ATP carrier cooperate in receptor recruitment and translocation into mitochondria , 2001, The EMBO journal.

[25]  Enrico Schleiff,et al.  Membrane protein insertion: mixing eukaryotic and prokaryotic concepts , 2005, EMBO reports.

[26]  Walter Neupert,et al.  Evolutionary conservation of biogenesis of β-barrel membrane proteins , 2003, Nature.

[27]  N. Pfanner,et al.  Toward the complete yeast mitochondrial proteome: multidimensional separation techniques for mitochondrial proteomics. , 2006, Journal of proteome research.

[28]  D. W. Staple,et al.  Solution structure and thermodynamic investigation of the HIV-1 frameshift inducing element. , 2005, Journal of molecular biology.

[29]  Koji Okamoto,et al.  The protein import motor of mitochondria: a targeted molecular ratchet driving unfolding and translocation , 2002, The EMBO journal.

[30]  T. Endo,et al.  Two novel proteins in the mitochondrial outer membrane mediate β-barrel protein assembly , 2004, The Journal of cell biology.

[31]  W. Oppliger,et al.  The Tim9p–Tim10p complex binds to the transmembrane domains of the ADP/ATP carrier , 2002, The EMBO journal.

[32]  F. Martin,et al.  A Cooperative Action of the ATP-Dependent Import Motor Complex and the Inner Membrane Potential Drives Mitochondrial Preprotein Import , 2006, Molecular and Cellular Biology.

[33]  Albert Sickmann,et al.  Protein Insertion into the Mitochondrial Inner Membrane by a Twin-Pore Translocase , 2003, Science.

[34]  S. Nishikawa,et al.  Tim50 Is a Subunit of the TIM23 Complex that Links Protein Translocation across the Outer and Inner Mitochondrial Membranes , 2002, Cell.

[35]  Albert Sickmann,et al.  Mitochondrial Presequence Translocase: Switching between TOM Tethering and Motor Recruitment Involves Tim21 and Tim17 , 2005, Cell.

[36]  T. Endo,et al.  Comparison of the protein-unfolding pathways between mitochondrial protein import and atomic-force microscopy measurements. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[37]  Y. Abe [Structural basis of presequence recognition by the mitochondrial protein import receptor Tom20]. , 2001, Fukuoka igaku zasshi = Hukuoka acta medica.

[38]  N. Pfanner,et al.  Multistep assembly of the protein import channel of the mitochondrial outer membrane , 2001, Nature Structural Biology.

[39]  R. Waller,et al.  The Omp85 family of proteins is essential for outer membrane biogenesis in mitochondria and bacteria , 2004, The Journal of cell biology.

[40]  Christiane Lohaus,et al.  The mitochondrial morphology protein Mdm10 functions in assembly of the preprotein translocase of the outer membrane. , 2004, Developmental cell.

[41]  R. Jensen,et al.  The Tim9p/10p and Tim8p/13p complexes bind to specific sites on Tim23p during mitochondrial protein import. , 2006, Molecular biology of the cell.

[42]  N. Pfanner,et al.  An Essential Role of Sam50 in the Protein Sorting and Assembly Machinery of the Mitochondrial Outer Membrane* , 2003, Journal of Biological Chemistry.

[43]  N. Pfanner,et al.  Tim50 Maintains the Permeability Barrier of the Mitochondrial Inner Membrane , 2006, Science.

[44]  D. Sideris,et al.  Oxidative folding of small Tims is mediated by site‐specific docking onto Mia40 in the mitochondrial intermembrane space , 2007, Molecular microbiology.

[45]  S. Jakobs,et al.  Mdm31 and Mdm32 are inner membrane proteins required for maintenance of mitochondrial shape and stability of mitochondrial DNA nucleoids in yeast , 2005, The Journal of cell biology.

[46]  J. Kahn,et al.  Corrigendum to “Bacterial Repression Loops Require Enhanced DNA Flexibility” [J. Mol. Biol. (2005) 349, 716–730] , 2005 .

[47]  D. Sideris,et al.  Erv1 mediates the Mia40-dependent protein import pathway and provides a functional link to the respiratory chain by shuttling electrons to cytochrome c. , 2005, Journal of molecular biology.

[48]  Maithreyan Srinivasan,et al.  Mmm2p, a mitochondrial outer membrane protein required for yeast mitochondrial shape and maintenance of mtDNA nucleoids , 2004, The Journal of cell biology.

[49]  N. Pfanner,et al.  The essential mitochondrial protein Erv1 cooperates with Mia40 in biogenesis of intermembrane space proteins. , 2005, Journal of molecular biology.

[50]  Ronald J. Moore,et al.  Integrative Analysis of the Mitochondrial Proteome in Yeast , 2004, PLoS biology.

[51]  N. Pfanner,et al.  Biogenesis of the Essential Tim9–Tim10 Chaperone Complex of Mitochondria , 2007, Journal of Biological Chemistry.

[52]  N. Pfanner,et al.  Essential role of Mia40 in import and assembly of mitochondrial intermembrane space proteins , 2004, The EMBO journal.

[53]  Albert Sickmann,et al.  Pam17 Is Required for Architecture and Translocation Activity of the Mitochondrial Protein Import Motor , 2005, Molecular and Cellular Biology.

[54]  S. Nishikawa,et al.  Identification of Tim40 That Mediates Protein Sorting to the Mitochondrial Intermembrane Space* , 2004, Journal of Biological Chemistry.