Spectral Kernels for Probabilistic Analysis and Clustering of Shapes

We propose a framework for probabilistic shape clustering based on kernel-space embeddings derived from spectral signatures. Our root motivation is to investigate practical yet principled clustering schemes that rely on geometrical invariants of shapes rather than explicit registration. To that end we revisit the use of the Laplacian spectrum and introduce a parametric family of reproducing kernels for shapes, extending WESD [12] and shape DNA [20] like metrics. Parameters provide control over the relative importance of local and global shape features and can be adjusted to emphasize a scale of interest. As a result of kernelization, shapes are embedded in an infinite-dimensional inner product space. We leverage this structure to formulate shape clustering via a Bayesian mixture of kernel-space Principal Component Analysers. We derive simple variational Bayes inference schemes in Hilbert space, addressing technicalities stemming from the infinite dimensionality. The proposed approach is validated on tasks of unsupervised clustering of sub-cortical structures, as well as classification of cardiac left ventricles w.r.t. pathological groups.

[1]  Ben Glocker,et al.  WESD--Weighted Spectral Distance for Measuring Shape Dissimilarity , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[2]  Shing-Tung Yau,et al.  On the Schrödinger equation and the eigenvalue problem , 1983 .

[3]  Guido Gerig,et al.  Morphometry of anatomical shape complexes with dense deformations and sparse parameters , 2014, NeuroImage.

[4]  Niklas Peinecke,et al.  Laplace-Beltrami spectra as 'Shape-DNA' of surfaces and solids , 2006, Comput. Aided Des..

[5]  Denis S. Grebenkov,et al.  Geometrical Structure of Laplacian Eigenfunctions , 2012, SIAM Rev..

[6]  Jitendra Malik,et al.  Shape matching and object recognition using shape contexts , 2010, 2010 3rd International Conference on Computer Science and Information Technology.

[7]  References , 1971 .

[8]  Christopher M. Bishop,et al.  Mixtures of Probabilistic Principal Component Analyzers , 1999, Neural Computation.

[9]  Polina Golland,et al.  BrainPrint: A discriminative characterization of brain morphology , 2015, NeuroImage.

[10]  Maks Ovsjanikov,et al.  Functional maps , 2012, ACM Trans. Graph..

[11]  Ben Glocker,et al.  Discriminative Segmentation-Based Evaluation Through Shape Dissimilarity , 2012, IEEE Transactions on Medical Imaging.

[12]  Andriy Myronenko,et al.  Point Set Registration: Coherent Point Drift , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[13]  P. Thomas Fletcher,et al.  Bayesian principal geodesic analysis for estimating intrinsic diffeomorphic image variability , 2015, Medical Image Anal..

[14]  Francesco Masulli,et al.  A survey of kernel and spectral methods for clustering , 2008, Pattern Recognit..

[15]  Timothy F. Cootes,et al.  Active Shape Models-Their Training and Application , 1995, Comput. Vis. Image Underst..

[16]  Florence Martin,et al.  Statistical shape analysis of subcortical structures using spectral matching , 2016, Comput. Medical Imaging Graph..

[17]  Leonidas J. Guibas,et al.  Shape google: Geometric words and expressions for invariant shape retrieval , 2011, TOGS.

[18]  Arthur W. Toga,et al.  Construction of a 3D probabilistic atlas of human cortical structures , 2008, NeuroImage.

[19]  Michel Verleysen,et al.  Robust Bayesian clustering , 2007, Neural Networks.

[20]  Qing-Ming Cheng,et al.  Bounds on eigenvalues of Dirichlet Laplacian , 2006 .

[21]  Pietro Gori,et al.  A Bayesian framework for joint morphometry of surface and curve meshes in multi‐object complexes , 2017, Medical Image Anal..

[22]  H. Weyl Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung) , 1912 .

[23]  Alexander M. Bronstein,et al.  Volumetric heat kernel signatures , 2010, 3DOR '10.

[24]  Martha Elizabeth Shenton,et al.  Global Medical Shape Analysis Using the Laplace-Beltrami Spectrum , 2007, MICCAI.

[25]  Jean-Francois Mangin,et al.  Larger is twistier: Spectral analysis of gyrification (SPANGY) applied to adult brain size polymorphism , 2012, NeuroImage.

[26]  Nicholas Ayache,et al.  Brain Transfer: Spectral Analysis of Cortical Surfaces and Functional Maps , 2015, IPMI.

[27]  P. Thomas Fletcher,et al.  Principal geodesic analysis for the study of nonlinear statistics of shape , 2004, IEEE Transactions on Medical Imaging.

[28]  Paul A. Yushkevich,et al.  Multiscale deformable model segmentation and statistical shape analysis using medial descriptions , 2002, IEEE Transactions on Medical Imaging.