A Self-Consistent Monte Carlo Particle Model to Analyze Semiconductor Microcomponents of any Geometry

A self-consistent Monte Carlo particle model to simulate semiconductor microcomponents of any geometry is presented. The model is aimed at a full understanding of the functioning of the device down to microscopic level. The simulation consists briefly of following the transport histories of individual carriers. The time of free flight, the frequencies of the various types of interaction between the lattice and the carriers and the scattering angles have distinct stochastic distributions. By choosing random numbers with the same distributions, it is possible to simulate carrier transport. After a review of semiconductor physics, the details of the method is explained. This is followed by examples, mainly from simulation of GaAs MESFET's, to demonstrate some of the abilities of the model. The distributions of the carriers and fields are used to explain physical phenomena such as substrate currents and negative differential resistivity. The only parameters that enter the calculations are those describing the geometry of the device and those fundamental to the semiconductor, such as material constants, the phonon spectra and the band structure. Any adjustable, geometry dependent parameters do not enter the model.

[1]  Peter A. Houston,et al.  Electron drift velocity in n-GaAs at high electric fields , 1977 .

[2]  H. Saito,et al.  Spontaneous luminescence due to high density electron-hole plasma in GaAs under nano- and pico-second pulse excitation , 1980 .

[3]  J. Barker The oscillatory structure of the magnetophonon effect. II. Resolvent analysis of the longitudinal configuration , 1973 .

[4]  Y. Inuishi,et al.  Hot electron distribution function with LO phonon kink in n-GaAs , 1978 .

[5]  H. D. Rees,et al.  Calculation of steady state distribution functions by exploiting stability , 1968 .

[6]  A. Bruce Langdon Analysis of the time integration in plasma simulation , 1979 .

[7]  F. Stern Self-Consistent Results for n -Type Si Inversion Layers , 1972 .

[8]  Marvin L. Cohen,et al.  Band Structures and Pseudopotential Form Factors for Fourteen Semiconductors of the Diamond and Zinc-blende Structures , 1966 .

[9]  Y. Inuishi,et al.  Non-Maxwellian Electron Distribution Function in n-GaAs Determined from Electric Field-Dependent Photoluminescence Spectrum , 1978 .

[10]  M. Hollis,et al.  Importance of electron scattering with coupled plasmon-optical phonon modes in GaAs planar-doped barrier transistors , 1983, IEEE Electron Device Letters.

[11]  D. K. Ferry,et al.  SCATTERING OF INVERSION LAYER ELECTRONS BY OXIDE POLAR MODE GENERATED INTERFACE PHONONS. , 1980 .

[12]  Y. Awano,et al.  Monte Carlo simulation of submicron GaAs n + -i(n)-n + diode , 1982 .

[13]  E. Constant,et al.  Diffusion and the power spectral density and correlation function of velocity fluctuation for electrons in Si and GaAs by Monte Carlo methods , 1980 .

[14]  W. Fawcett,et al.  Monte Carlo determination of electron transport properties in gallium arsenide , 1970 .

[15]  R. Fauquembergue,et al.  Monte-Carlo simulation of space-charge injection FET , 1982 .

[16]  H. Beneking On the response behavior of fast photoconductive optical planar and coaxial semiconductor detectors , 1982, IEEE Transactions on Electron Devices.

[17]  S. Pantelides,et al.  Structure of the valence bands of zinc-blende-type semiconductors , 1975 .

[18]  Carlo Jacoboni,et al.  Bulk hot-electron properties of cubic semiconductors , 1979 .

[19]  C. Moglestue Hot, tepid and temperate electrons in bulk GaAs , 1986 .

[20]  P. Maksym CORRIGENDUM: A theoretical study of hot photoexcited electrons in GaAs , 1982 .

[21]  R. Lomax,et al.  Finite-element methods in semiconductor device simulation , 1977, IEEE Transactions on Electron Devices.

[22]  Hermann A. Haus,et al.  Signal and Noise Properties of Gallium Arsenide Microwave Field-Effect-Transistors , 1975 .

[23]  A. Reklaitis,et al.  Electron transport properties in GaAs at high electric fields , 1980 .

[24]  D. Ferry Scattering by polar-optical phonons in a quasi-two-dimensional semiconductor☆ , 1978 .

[25]  C. Moglestue Computer simulation of a dual gate GaAs field-effect transistor using the Monte Carlo method , 1979 .

[26]  S. Selberherr,et al.  Finite boxes—A generalization of the finite-difference method suitable for semiconductor device simulation , 1983, IEEE Transactions on Electron Devices.

[27]  James R. Chelikowsky,et al.  Nonlocal pseudopotential calculations for the electronic structure of eleven diamond and zinc-blende semiconductors , 1976 .

[28]  H. Queisser,et al.  Electron scattering by ionized impurities in semiconductors , 1981 .

[29]  Siegfried Selberherr,et al.  Process and device modeling for VISI , 1984 .

[30]  A. Bruce Langdon,et al.  THEORY OF PLASMA SIMULATION USING FINITE-SIZE PARTICLES. , 1970 .

[31]  F. Stern,et al.  Properties of Semiconductor Surface Inversion Layers in the Electric Quantum Limit , 1967 .

[32]  A. van der Ziel,et al.  Noise in Solid State Devices , 1978 .

[33]  Hiroshi Kobayashi,et al.  Picosecond Dynamics of Optical Gain Duo to Electron-Hole Plasma in GaAs under Near Band-Gap Excitation , 1983 .

[34]  M. Reiser,et al.  Two-dimensional particle models in semiconductor-device analysis , 1974 .

[35]  R. Brown Scattering theory for crystal dislocations , 1977 .

[36]  R. Warriner Distribution function relaxation times in gallium arsenide , 1977 .

[37]  A. Mircea,et al.  Electron traps in bulk and epitaxial GaAs crystals , 1977 .

[38]  E. Kane,et al.  Band structure of indium antimonide , 1957 .

[39]  H. Craighead,et al.  Fabrication of 20‐nm structures in GaAs , 1984 .

[40]  L. Eastman,et al.  A study of alloy scattering in Ga1−xAlxAs , 1980 .

[41]  Karl Hess,et al.  Band-structure-dependent transport and impact ionization in GaAs , 1981 .

[42]  0.15 µm Channel-length MOSFET's fabricated using e-beam lithography , 1982, IEEE Electron Device Letters.

[43]  Roger W. Hockney,et al.  A Fast Direct Solution of Poisson's Equation Using Fourier Analysis , 1965, JACM.

[44]  M. Konagai,et al.  Alloy scattering potential in p‐type Ga1−xAlxAs , 1983 .

[45]  S Bosi,et al.  Monte Carlo high-field transport in degenerate GaAs , 1976 .

[46]  T. Amand,et al.  ELECTRON-HOLE INTERACTION IN THE PRESENCE OF EXCITONS , 1984 .

[47]  P. J. Price,et al.  Monte Carlo calculations on hot electron energy tails , 1977 .

[48]  J. Zook Piezoelectric Scattering in Semiconductors , 1964 .

[49]  I. Yokota On the Coupling between Optical Lattice Vibrations and Carrier Plasma Oscillations in Polar Semiconductors , 1961 .

[50]  R. Hockney,et al.  Shaping the force law in two-dimensional particle-mesh models , 1974 .

[51]  P. Wolf,et al.  Microwave properties of Schottky-barrier field-effect transistors , 1970 .

[52]  C. Erginsoy Neutral Impurity Scattering in Semiconductors , 1950 .

[53]  Remote polar phonon scattering in Si inversion layers , 1980 .

[54]  M. Asche,et al.  Electron–Phonon Interaction in n‐Si , 1981 .

[55]  H. A. Willing,et al.  Modelling of Gunn-domain effects in GaAs m.e.s.f.e.t.s , 1977 .

[56]  T. H. Ning,et al.  Electron scattering in silicon inversion layers by oxide and surface roughness , 1976 .

[57]  R. Hockney,et al.  Measurements of collision and heating times in a two-dimensional thermal computer plasma , 1971 .

[58]  T. Jackson,et al.  Electron microscope studies of an alloyed Au/Ni/Au‐Ge ohmic contact to GaAs , 1983 .

[59]  C. Jacoboni,et al.  The Monte Carlo method for the solution of charge transport in semiconductors with applications to covalent materials , 1983 .

[60]  R. Hockney,et al.  Quiet high resolution computer models of a plasma , 1974 .

[61]  C. Moglestue,et al.  Monte Carlo particle modelling of small semiconductor devices , 1982 .