Single shot longitudinal bunch profile measurements by temporally resolved electro-optical detection

For the high gain operation of a SASE FEL, extremely short electron bunches are essential to generate sufficiently high peak currents. At the superconducting linac of FLASH at DESY, we have installed an electrooptic measurement system to probe the time structure of the electric field of single ~100 fs electron bunches. In this technique, the field induced birefringence in an electro-optic crystal is encoded on a chirped picosecond laser pulse. The longitudinal electric field profile of the electron bunch is then obtained from the encoded optical pulse by a single shot cross correlation with a 35 fs laser pulse using a second harmonic crystal (temporal decoding). An electro-optical signal exhibiting a feature with 118 fs FWHM was observed, and this is close to the limit of resolution due to the material properties of the particular electro-optic crystal used. The measured electro-optic signals are compared to bunch shapes simultaneously measured with a transverse deflecting cavity.