The Thermal Regime of NW Canada and Alaska, and Tectonic and Seismicity Consequences

[1]  P. Audet,et al.  Seismic Evidence for a Weakened Thick Crust at the Beaufort Sea Continental Margin , 2022, Geophysical Research Letters.

[2]  J. Russell,et al.  Xenoliths reveal a hot Moho and thin lithosphere at the Cordillera-craton boundary of western Canada , 2022, Geology.

[3]  T. Katsura A Revised Adiabatic Temperature Profile for the Mantle , 2022, Journal of Geophysical Research: Solid Earth.

[4]  J. Russell,et al.  A test of models for recent lithosphere foundering or replacement in the Canadian Cordillera using peridotite xenolith geothermometry , 2021 .

[5]  K. Fischer,et al.  Shear-wave velocity structure beneath Alaska from a Bayesian joint inversion of Sp receiver functions and Rayleigh wave phase velocities , 2021 .

[6]  F. Mouthereau,et al.  Cenozoic Exhumation History of the Eastern Margin of the Northern Canadian Cordillera , 2021, Tectonics.

[7]  Lihong Zhao,et al.  The effective elastic thickness of the lithosphere in the Amerasia Basin, Arctic Ocean , 2021, Terra Nova.

[8]  E. Enkelmann,et al.  Is the Eastern Denali fault still active? , 2021, Geology.

[9]  G. Abers,et al.  Teleseismic Attenuation, Temperature, and Melt of the Upper Mantle in the Alaska Subduction Zone , 2021, Journal of Geophysical Research: Solid Earth.

[10]  R. Porter,et al.  Mapping the Thermal Lithosphere and Melting Across the Continental US , 2020, Geophysical Research Letters.

[11]  M. Grove,et al.  Subduction accretion, thermal overprinting, and exhumation of high-pressure/low-temperature metasedimentary rocks of the south-central brooks range , 2020, International Geology Review.

[12]  R. Aster,et al.  Moho Variations across the Northern Canadian Cordillera , 2020 .

[13]  C. Tape,et al.  3D Seismic Velocity Models for Alaska from Joint Tomographic Inversion of Body-Wave and Surface-Wave Data , 2020 .

[14]  M. Haney,et al.  Bulk Structure of the Crust and Upper Mantle beneath Alaska from an Approximate Rayleigh-Wave Dispersion Formula , 2020 .

[15]  G. Abers,et al.  Introduction to the Focus Section on EarthScope Alaska and Canada , 2020 .

[16]  S. Grasby,et al.  Heat transition for major communities supported by geothermal energy development of the Alberta Basin, Canada , 2020 .

[17]  E. al.,et al.  Paleomagnetic constraints on the duration of the Australia-Laurentia connection in the core of the Nuna supercontinent , 2020, Geology.

[18]  S. Goes,et al.  Continental lithospheric temperatures: A review , 2020 .

[19]  D. Blackwell,et al.  Thermal evolution of the Northern Cordillera Volcanic Province: implication for heat flow in remnant back-arc regions , 2019, International Geology Review.

[20]  J. B. Murphy,et al.  Critical role of water in the formation of continental crust , 2020, Nature Geoscience.

[21]  N. Ruppert,et al.  The Impact of USArray on Earthquake Monitoring in Alaska , 2020, Seismological Research Letters.

[22]  J. Dettmer,et al.  Moho Structure Across the Backarc‐Craton Transition in the Northern U.S. Cordillera , 2020, Tectonics.

[23]  R. Aster,et al.  The Upper Mantle Structure of Northwestern Canada From Teleseismic Body Wave Tomography , 2020, Journal of Geophysical Research: Solid Earth.

[24]  J. Dewey,et al.  The sources of metamorphic heat during collisional orogeny: the Barrovian enigma , 2019 .

[25]  S. Lee,et al.  Synthesizing EarthScope data to constrain the thermal evolution of the continental U.S. lithosphere , 2019, Geosphere.

[26]  M. Ritzwoller,et al.  A 3‐D Shear Velocity Model of the Crust and Uppermost Mantle Beneath Alaska Including Apparent Radial Anisotropy , 2019, Journal of Geophysical Research: Solid Earth.

[27]  C. Oppenheimer,et al.  Quantifying Asthenospheric and Lithospheric Controls on Mafic Magmatism Across North Africa , 2019, Geochemistry, Geophysics, Geosystems.

[28]  P. Audet,et al.  Mapping Curie Depth Across Western Canada From a Wavelet Analysis of Magnetic Anomaly Data , 2019, Journal of Geophysical Research: Solid Earth.

[29]  P. Audet,et al.  Seismic Evidence for Lithospheric Thinning and Heat in the northern Canadian Cordillera , 2019, Geophysical Research Letters.

[30]  H. Gibson,et al.  Mesozoic-Cenozoic deformation in the Canadian Cordillera: The record of a “Continental Bulldozer”? , 2019, Tectonophysics.

[31]  G. Pavlis,et al.  A unified three-dimensional model of the lithospheric structure at the subduction corner in southeast Alaska: Summary results from STEEP , 2019, Geosphere.

[32]  C. Dalton,et al.  Long‐Period Rayleigh Wave Phase Velocity Tomography Using USArray , 2019, Geochemistry, Geophysics, Geosystems.

[33]  Aibing Li,et al.  Crustal Structure in Alaska From Receiver Function Analysis , 2019, Geophysical Research Letters.

[34]  R. Hyndman Mountain Building Orogeny in Precollision Hot Backarcs: North American Cordillera, India‐Tibet, and Grenville Province , 2019, Journal of Geophysical Research: Solid Earth.

[35]  R. Hyndman Origin of Regional Barrovian Metamorphism in Hot Backarcs Prior to Orogeny Deformation , 2019, Geochemistry, Geophysics, Geosystems.

[36]  I. Artemieva Lithosphere structure in Europe from thermal isostasy , 2019, Earth-Science Reviews.

[37]  N. Hayward The 3D Geophysical Investigation of a Middle Cretaceous to Paleocene Regional Décollement in the Cordillera of Northern Canada and Alaska , 2019, Tectonics.

[38]  P. Audet,et al.  Curie depth estimation from magnetic anomaly data: a re-assessment using multitaper spectral analysis and Bayesian inference , 2018, Geophysical Journal International.

[39]  W. Levandowski,et al.  Lithospheric Alteration, Intraplate Crustal Deformation, and Topography in Eastern China , 2018, Tectonics.

[40]  R. Allen,et al.  Seismic Imaging of the Alaska Subduction Zone: Implications for Slab Geometry and Volcanism , 2018, Geochemistry, Geophysics, Geosystems.

[41]  H. Kao,et al.  Induced Seismicity in Western Canada Linked to Tectonic Strain Rate: Implications for Regional Seismic Hazard , 2018, Geophysical Research Letters.

[42]  Louis Moresi,et al.  Mapping the Alaskan Moho , 2018, Seismological Research Letters.

[43]  K. Ward,et al.  Upper Mantle Seismic Structure of Alaska From Rayleigh and S Wave Tomography , 2018, Geophysical Research Letters.

[44]  K. Ward,et al.  Lithospheric Structure Across the Alaskan Cordillera From the Joint Inversion of Surface Waves and Receiver Functions , 2018, Journal of Geophysical Research: Solid Earth.

[45]  W. Lamb,et al.  Water and Oxygen Fugacity in the Lithospheric Mantle Wedge beneath the Northern Canadian Cordillera (Alligator Lake) , 2018, Geochemistry, Geophysics, Geosystems.

[46]  E. Hauksson,et al.  Applying Depth Distribution of Seismicity to Determine Thermo-Mechanical Properties of the Seismogenic Crust in Southern California: Comparing Lithotectonic Blocks , 2018, Pure and Applied Geophysics.

[47]  N. White,et al.  Quantitative Relationships Between Basalt Geochemistry, Shear Wave Velocity, and Asthenospheric Temperature Beneath Western North America , 2018, Geochemistry, Geophysics, Geosystems.

[48]  Y. Gu,et al.  A New Appraisal of Lithospheric Structures of the Cordillera‐Craton Boundary Region in Western Canada , 2018, Tectonics.

[49]  P. Audet,et al.  Deep Crustal Earthquakes in the Beaufort Sea, Western Canadian Arctic, from Teleseismic Depth Phase Analysis , 2018 .

[50]  M. Miller,et al.  Multiscale crustal architecture of Alaska inferred from P receiver functions , 2018 .

[51]  A. Lowry,et al.  Moho temperature and mobility of lower crust in the western United States , 2018 .

[52]  J. Ritz,et al.  Active tectonics around the Yakutat indentor: New geomorphological constraints on the eastern Denali, Totschunda and Duke River Faults , 2018 .

[53]  K. Fischer,et al.  The Changing Face of the Lithosphere‐Asthenosphere Boundary: Imaging Continental Scale Patterns in Upper Mantle Structure Across the Contiguous U.S. With Sp Converted Waves , 2017, Geochemistry, Geophysics, Geosystems.

[54]  I. Kukkonen,et al.  Heat flow, seismic cutoff depth and thermal modeling of the Fennoscandian Shield , 2017 .

[55]  Yehuda Ben-Zion,et al.  Ten kilometer vertical Moho offset and shallow velocity contrast along the Denali fault zone from double-difference tomography, receiver functions, and fault zone head waves , 2017 .

[56]  P. Audet,et al.  Architecture of the crust and uppermost mantle in the northern Canadian Cordillera from receiver functions , 2017 .

[57]  R. Hyndman Lower-crustal flow and detachment in the North American Cordillera: a consequence of Cordillera-wide high temperatures , 2017 .

[58]  P. Shearer,et al.  Uppermost mantle seismic velocity structure beneath USArray , 2017 .

[59]  Yasuko Takei,et al.  Polycrystal anelasticity at near‐solidus temperatures , 2016 .

[60]  C. Demets,et al.  High-resolution reconstructions of Pacific-North America plate motion: 20 Ma to present , 2016 .

[61]  D. Hasterok,et al.  Utilizing thermal isostasy to estimate sub-lithospheric heat flow and anomalous crustal radioactivity , 2016 .

[62]  C. Faccenna,et al.  Isostasy, flexure, and dynamic topography , 2016 .

[63]  D. Blackwell,et al.  Heat flow and temperature-depth curves throughout Alaska: finding regions for future geothermal exploration , 2016 .

[64]  D. Forsyth,et al.  Thermal structure and melting conditions in the mantle beneath the Basin and Range province from seismology and petrology , 2016 .

[65]  K. Karlstrom,et al.  Distinct crustal isostasy trends east and west of the Rocky Mountain Front , 2015 .

[66]  R. Hyndman Tectonic Consequences of a Uniformly Hot Backarc and Why is the Cordillera Mountain Belt High , 2015 .

[67]  B. Schmandt,et al.  Thermal classification of lithospheric discontinuities beneath USArray , 2015 .

[68]  M. Behn,et al.  Compositional dependence of lower crustal viscosity , 2015 .

[69]  W. Mooney,et al.  Variations of the lithospheric strength and elastic thickness in North America , 2015 .

[70]  J. Freymueller,et al.  Indentor‐corner tectonics in the Yakutat‐St. Elias collision constrained by GPS , 2015 .

[71]  R. Hyndman Tectonics and Structure of the Queen Charlotte Fault Zone, Haida Gwaii, and Large Thrust Earthquakes , 2015 .

[72]  M. Miller,et al.  Lithospheric discontinuity structure in Alaska, thickness variations determined by Sp receiver functions , 2015 .

[73]  P. Kelemen,et al.  The seismic mid-lithosphere discontinuity , 2015 .

[74]  Jian Wang,et al.  Crustal magmatism and lithospheric geothermal state of western North America and their implications for a magnetic mantle , 2015 .

[75]  W. Mooney,et al.  Density, temperature, and composition of the North American lithosphere—New insights from a joint analysis of seismic, gravity, and mineral physics data: 2. Thermal and compositional model of the upper mantle , 2014 .

[76]  C. Tape,et al.  Seismic velocity structure and anisotropy of the Alaska subduction zone based on surface wave tomography , 2014 .

[77]  W. Mooney,et al.  Density, temperature, and composition of the North American lithosphere—New insights from a joint analysis of seismic, gravity, and mineral physics data: 1. Density structure of the crust and upper mantle , 2014 .

[78]  D. Eaton,et al.  Plateau uplift in western Canada caused by lithospheric delamination along a craton edge , 2014 .

[79]  S. Lebedev,et al.  Imaging the North American continent using waveform inversion of global and USArray data , 2014 .

[80]  S. Grasby,et al.  Geothermal Energy for Northern Canada: Is it Economical? , 2014, Natural Resources Research.

[81]  R. Powell,et al.  Magmatism, orogeny and the origin of high-heat-producing granites in Australian Proterozoic terranes , 2014, Journal of the Geological Society.

[82]  Yannik Behr,et al.  Ambient seismic noise tomography of Canada and adjacent regions: Part I. Crustal structures , 2013 .

[83]  K. Priestley,et al.  The relationship between shear wave velocity, temperature, attenuation and viscosity in the shallow part of the mantle , 2013 .

[84]  S. Mukasa,et al.  Cretaceous lower crust of the continental margins of the northern pacific: Petrological and geochronological data on lower to middle crustal xenoliths , 2013, Petrology.

[85]  E. Ghent,et al.  Corrigendum: Geothermobarometry of spinel peridotites from southern British Columbia: implications for the thermal conditions in the upper mantle , 2012 .

[86]  A. D’Alessandro,et al.  Evaluation of Location Performance and Magnitude of Completeness of the Alaska Regional Seismic Network by the SNES Method , 2012 .

[87]  V. Hamza,et al.  Global distribution of the lithosphere-asthenosphere boundary: a new look , 2012 .

[88]  R. Kind,et al.  Seismic receiver functions and the lithosphere–asthenosphere boundary , 2012 .

[89]  R. Hansen,et al.  Review of crustal seismicity in the Aleutian Arc and implications for arc deformation , 2012 .

[90]  R. Hyndman,et al.  Why is the North America Cordillera high? Hot backarcs, thermal isostasy, and mountain belts , 2011 .

[91]  David S. Chapman,et al.  Heat production and geotherms for the continental lithosphere , 2011 .

[92]  R. Bürgmann,et al.  Dominant role of tectonic inheritance in supercontinent cycles , 2011 .

[93]  D. Thorkelson,et al.  Mantle flow through the Northern Cordilleran slab window revealed by volcanic geochemistry , 2011 .

[94]  S. Grasby,et al.  Heat flow, depth–temperature variations and stored thermal energy for enhanced geothermal systems in Canada , 2010 .

[95]  Rebecca Farrington,et al.  Cenozoic Tectonics of Western North America Controlled by Evolving Width of Farallon Slab , 2010, Science.

[96]  L. Ailleres,et al.  An aeromagnetic approach to revealing buried basement structures and their role in the Proterozoic evolution of the Wernecke Inlier, Yukon Territory, Canada , 2010 .

[97]  S. Grasby,et al.  High Potential Regions for Enhanced Geothermal Systems in Canada , 2010 .

[98]  T. Yoshino,et al.  Adiabatic temperature profile in the mantle , 2010 .

[99]  K. Fischer,et al.  The Lithosphere- Asthenosphere Boundary , 2010 .

[100]  C. Jaupart,et al.  Thermal regime of the lithosphere in the Canadian ShieldThis article is one of a series of papers published in this Special Issue on the theme Lithoprobe — parameters, processes, and the evolution of a continent. , 2010 .

[101]  S. Mukasa,et al.  40Ar/39Ar eruption ages and geochemical characteristics of Late Tertiary to Quaternary intraplate and arc-related lavas in interior Alaska , 2010 .

[102]  M. Deraps,et al.  Petrogenesis of Basaltic Volcanic Rocks from the Pribilof Islands, Alaska, by Melting of Metasomatically Enriched Depleted Lithosphere, Crystallization Differentiation, and Magma Mixing , 2009 .

[103]  M. Pilkington,et al.  The Mackenzie River magnetic anomaly, Yukon and Northwest Territories, Canada-Evidence for Early Proterozoic magmatic arc crust at the edge of the North American craton , 2009 .

[104]  Richard J. Blakely,et al.  Mapping Curie temperature depth in the western United States with a fractal model for crustal magnetization , 2009 .

[105]  J. Cassidy,et al.  Body-wave tomography of western Canada , 2009 .

[106]  T. Pavlis,et al.  Intense localized rock uplift and erosion in the St Elias orogen of Alaska , 2009 .

[107]  T. Plank,et al.  Constraints on the depths and temperatures of basaltic magma generation on Earth and other terrestrial planets using new thermobarometers for mafic magmas , 2009 .

[108]  R. Hyndman,et al.  Temperature control of continental lithosphere elastic thickness, Te vs Vs , 2009 .

[109]  S. Johnston The Cordilleran Ribbon Continent of North America , 2008 .

[110]  A. Levander,et al.  Trans-Alaska Crustal Transect and continental evolution involving subduction underplating and synchronous foreland thrusting , 2008 .

[111]  D. Chapman,et al.  Continental thermal isostasy: 2. Application to North America , 2007 .

[112]  R. Saltus,et al.  Regional magnetic anomalies, crustal strength, and the location of the northern Cordilleran fold-and-thrust belt , 2007 .

[113]  G. Abers,et al.  Crustal thickness variation in south-central Alaska , 2006 .

[114]  M.R.W. Johnson,et al.  A discussion of possible heat sources during nappe stacking: the origin of Barrovian metamorphism within the Caledonian thrust sheets of NW Scotland , 2006, Journal of the Geological Society.

[115]  C. Jaupart,et al.  Upper mantle velocity-temperature conversion and composition determined from seismic refraction and heat flow , 2006 .

[116]  K. Priestley,et al.  The thermal structure of the lithosphere from shear wave velocities , 2006 .

[117]  J. Russell,et al.  Thermal state of the upper mantle beneath the Northern Cordilleran Volcanic Province (NCVP), British Columbia, Canada , 2006 .

[118]  T. Brocher Empirical relations between elastic wavespeeds and density in the Earth's crust , 2005 .

[119]  F. Cook,et al.  Tectonic significance of potential-field anomalies in western Canada: results from the Lithoprobe SNORCLE transect , 2005 .

[120]  R. Clowes,et al.  Constraints on the composition of the crust and uppermost mantle in northwestern Canada: Vp/Vs variations along Lithoprobe's SNorCLE transect , 2005 .

[121]  R. Clowes,et al.  Lithospheric structure in northwestern Canada from Lithoprobe seismic refraction and related studies: a synthesis , 2005 .

[122]  T. Lewis,et al.  Current tectonics of the northern Canadian Cordillera , 2005 .

[123]  F. Cook,et al.  The edge of northwestern North America at ∼1.8 Ga , 2005 .

[124]  G. Rogers,et al.  Seismicity in the vicinity of the SNORCLE corridors of the northern Canadian Cordillera , 2005 .

[125]  N. Sleep EVOLUTION OF THE CONTINENTAL LITHOSPHERE , 2005 .

[126]  I. Jackson,et al.  The seismological signature of temperature and grain size variations in the upper mantle , 2005 .

[127]  J. Afonso,et al.  Crustal and mantle strengths in continental lithosphere: is the jelly sandwich model obsolete? , 2004 .

[128]  N. Christensen,et al.  Seismic Velocity Models for the Denali Fault Zone along the Richardson Highway, Alaska , 2004 .

[129]  M. Cosca,et al.  Basaltic volcanism in the Bering Sea: geochronology and volcanic evolution of St. Paul Island, Pribilof Islands, Alaska , 2004 .

[130]  Jean-Claude Mareschal,et al.  Variations of surface heat flow and lithospheric thermal structure beneath the North American craton , 2004 .

[131]  M. Kopylova,et al.  Mantle Xenoliths from the Southeastern Slave Craton: Evidence for Chemical Zonation in a Thick, Cold Lithosphere , 2004 .

[132]  D. Snyder,et al.  Precambrian crust beneath the Mesozoic northern Canadian Cordillera discovered by Lithoprobe seismic reflection profiling , 2004 .

[133]  D. Giardini,et al.  Inferring upper-mantle temperatures from seismic velocities , 2003 .

[134]  Anthony Watts,et al.  Lithospheric strength and its relationship to the elastic and seismogenic layer thickness , 2003 .

[135]  W. Mooney,et al.  Seismic Structure of the Crust and Uppermost Mantle of North America and Adjacent Oceanic Basins: A Synthesis , 2002 .

[136]  K. Fischer Waning buoyancy in the crustal roots of old mountains , 2002, Nature.

[137]  R. Hyndman,et al.  Yakutat collision and strain transfer across the northern Canadian Cordillera , 2002 .

[138]  W. Collins Hot orogens, tectonic switching, and creation of continental crust , 2002 .

[139]  Z. Hajnal,et al.  Lithospheric structure across the craton–Cordilleran transition of northeastern British Columbia , 2001 .

[140]  K. Schulmann,et al.  Thermally softened continental extensional zones (arcs and rifts) as precursors to thickened orogenic belts , 2001 .

[141]  J. Jackson,et al.  Characteristics and consequences of flow in the lower crust , 2000 .

[142]  Pierre Vacher,et al.  Shallow mantle temperatures under Europe from P and S wave tomography , 2000 .

[143]  W. Hammond,et al.  Upper mantle seismic wave velocity' Effects of realistic partial melt geometries , 2000 .

[144]  T. Lewis,et al.  Geophysical consequences of the Cordillera–Craton thermal transition in southwestern Canada , 1999 .

[145]  L. Guillou-Frottier,et al.  Heat flow and thickness of the lithosphere in the Canadian Shield , 1998 .

[146]  N. Christensen,et al.  Deep seismic structure and tectonics of northern Alaska: Crustal-scale duplexing with deformation extending into the upper mantle , 1997 .

[147]  T. Moore,et al.  Crustal implications of bedrock geology along the Trans‐Alaska Crustal Transect (TACT) in the Brooks Range, northern Alaska , 1997 .

[148]  A. Levander,et al.  Seismic images of crustal duplexing and continental subduction in the Brooks Range , 1997 .

[149]  F. Cook,et al.  Structure and tectonic development of the southern Rocky Mountain trench , 1996 .

[150]  M. Diament,et al.  Isostasy, equivalent elastic thickness, and inelastic rheology of continents and oceans , 1996 .

[151]  P. Bird Computer simulations of Alaskan neotectonics , 1996 .

[152]  J. Majorowicz Anomalous heat flow regime in the Western margin of the North American Craton, Canada , 1996 .

[153]  T. Lewis,et al.  Review: The thermal regime along the southern Canadian Cordillera Lithoprobe corridor , 1995 .

[154]  Walter D. Mooney,et al.  Seismic velocity structure and composition of the continental crust: A global view , 1995 .

[155]  Robert B. Smith,et al.  Flexural rigidity of the Basin and Range‐Colorado Plateau‐Rocky Mountain transition from coherence analysis of gravity and topography , 1994 .

[156]  R. Hyndman,et al.  Geophysical support for aqueous fluids in the deep crust: seismic and electrical relationships , 1992 .

[157]  R. Mccaffrey Oblique plate convergence, slip vectors, and forearc deformation , 1992 .

[158]  T. Lewis,et al.  Crustal temperatures near the Lithoprobe Southern Canadian Cordillera Transect , 1992 .

[159]  T. Hudson,et al.  Mid-Cretaceous extensional fragmentation of a Jurassic-Early Cretaceous Compressional Orogen, Alaska , 1991 .

[160]  G. Ross Precambrian basement in the Canadian Cordillera: an introduction , 1991 .

[161]  Peter Bird,et al.  Lateral extrusion of lower crust from under high topography , 1991 .

[162]  N. Christensen,et al.  Crustal structure of accreted terranes in southern Alaska, Chugach Mountains and Copper River Basin, from seismic refraction results , 1991 .

[163]  L. Royden,et al.  Lithospheric Extension Near Lake Mead, Nevada: A Model for Ductile Flow in the Lower Crust , 1991 .

[164]  D. Blackwell,et al.  Heat flow in the Oregon Cascade Range and its correlation with regional gravity, Curie point depths, and geology , 1990 .

[165]  D. Blackwell,et al.  Heat flow in the state of washington and thermal conditions in the Cascade Range , 1990 .

[166]  D. Chapman,et al.  Deep intraplate earthquakes in the western United States and their relationship to lithospheric temperatures , 1990 .

[167]  D. B. Stone,et al.  Seismotectonics of northern Alaska , 1988 .

[168]  V. Červený,et al.  Relation between the field of surface heat flow and the distribution ofPn-wave velocities for continents , 1988 .

[169]  L. Braile,et al.  P/n/ velocity and cooling of the continental lithosphere. [upper mantle compression waves in North America] , 1982 .

[170]  R. G. Bowen,et al.  Heat flow, arc volcanism, and subduction in northern Oregon , 1982 .

[171]  H. Pollack,et al.  Global heat flow: A new look , 1975 .

[172]  D. C. Heath,et al.  The Mackenzie Mountains EarthScope Project: Studying Active Deformation in the Northern North American Cordillera from Margin to Craton , 2019, Seismological Research Letters.

[173]  N. Bolfan-Casanova,et al.  Distribution and transport of hydrogen in the lithospheric mantle: A review , 2016 .

[174]  Z. Chen,et al.  Geothermal energy resource potential of Canada , 2011 .

[175]  K. Bird,et al.  Chapter 32 Geology and petroleum potential of the Arctic Alaska petroleum province , 2011 .

[176]  J. Nelson,et al.  Chapter 31 A Palaeozoic NW Passage and the Timanian, Caledonian and Uralian connections of some exotic terranes in the North American Cordillera , 2011 .

[177]  M. Brown,et al.  Metamorphic patterns in orogenic systems and the geological record , 2009 .

[178]  D. Canil Canada's craton: A bottoms-up view , 2008 .

[179]  J. Nelson,et al.  Northern Cordilleran terranes and their interactions through time , 2007 .

[180]  S. Carr,et al.  Ductile thrusting versus channel flow in the southeastern Canadian Cordillera: evolution of a coherent crystalline thrust sheet , 2006, Geological Society, London, Special Publications.

[181]  R. Hyndman,et al.  Subduction zone backarcs, mobile belts, and orogenic heat , 2005 .

[182]  T. Ehlers Crustal Thermal Processes and the Interpretation of Thermochronometer Data , 2005 .

[183]  G. Rogers,et al.  Frequency of large crustal earthquakes in Puget Sound-Southern Georgia Strait predicted from geodetic and geological deformation rates , 2003 .

[184]  R. Saltus,et al.  A new magnetic view of Alaska , 1999 .

[185]  J. Russell,et al.  Petrology of Peridotite and Pyroxenite Xenoliths from the Jericho Kimberlite: Implications for the Thermal State of the Mantle beneath the Slave Craton, Northern Canada , 1999 .

[186]  C. Beaumont,et al.  Barrovian regional metamorphism: where’s the heat? , 1998, Geological Society, London, Special Publications.

[187]  D. V. Ramana,et al.  Surface heat flow and Pn velocity distribution in Peninsular India , 1991 .

[188]  R. A. Price Cordilleran Tectonics and the Evolution of the Western Canada Sedimentary Basin [Abstract] , 1990 .

[189]  R. Thompson The nature and significance of large ‘blind’ thrusts within the northern Rocky Mountains of Canada , 1981, Geological Society, London, Special Publications.