Multiscale Stochastic Preconditioners in Non-intrusive Spectral Projection

A preconditioning approach is developed that enables efficient polynomial chaos (PC) representations of uncertain dynamical systems. The approach is based on the definition of an appropriate multiscale stretching of the individual components of the dynamical system which, in particular, enables robust recovery of the unscaled transient dynamics. Efficient PC representations of the stochastic dynamics are then obtained through non-intrusive spectral projections of the stretched measures. Implementation of the present approach is illustrated through application to a chemical system with large uncertainties in the reaction rate constants. Computational experiments show that, despite the large stochastic variability of the stochastic solution, the resulting dynamics can be efficiently represented using sparse low-order PC expansions of the stochastic multiscale preconditioner and of stretched variables. The present experiences are finally used to motivate several strategies that promise to yield further advantages in spectral representations of stochastic dynamics.

[1]  O P Le Maître,et al.  Spectral stochastic uncertainty quantification in chemical systems , 2004 .

[2]  Jefferson W. Tester,et al.  Incorporation of parametric uncertainty into complex kinetic mechanisms: Application to hydrogen oxidation in supercritical water , 1998 .

[3]  Y. Marzouk,et al.  Uncertainty quantification in chemical systems , 2009 .

[4]  BabuskaIvo,et al.  A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007 .

[5]  Hermann G. Matthies,et al.  Numerical Methods and Smolyak Quadrature for Nonlinear Stochastic Partial Differential Equations , 2003 .

[6]  Habib N. Najm,et al.  Multi-Resolution-Analysis Scheme for Uncertainty Quantification in Chemical Systems , 2007, SIAM J. Sci. Comput..

[7]  G. Karniadakis,et al.  An adaptive multi-element generalized polynomial chaos method for stochastic differential equations , 2005 .

[8]  N. Cutland,et al.  On homogeneous chaos , 1991, Mathematical Proceedings of the Cambridge Philosophical Society.

[9]  O. L. Maître,et al.  Asynchronous Time Integration for Polynomial Chaos Expansion of Uncertain Periodic Dynamics , 2010 .

[10]  W. T. Martin,et al.  The Orthogonal Development of Non-Linear Functionals in Series of Fourier-Hermite Functionals , 1947 .

[11]  Fabio Nobile,et al.  A Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..

[12]  S. Janson Gaussian Hilbert Spaces , 1997 .

[13]  G. Karniadakis,et al.  Multi-Element Generalized Polynomial Chaos for Arbitrary Probability Measures , 2006, SIAM J. Sci. Comput..

[14]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[15]  Galen Reeves,et al.  “Compressed” compressed sensing , 2010, 2010 IEEE International Symposium on Information Theory.

[16]  Emmanuel J. Candès,et al.  Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.

[17]  L. Mathelin,et al.  A Stochastic Collocation Algorithm for Uncertainty Analysis , 2003 .

[18]  O. Kallenberg Foundations of Modern Probability , 2021, Probability Theory and Stochastic Modelling.

[19]  S. H. Lam,et al.  A study of homogeneous methanol oxidation kinetics using CSP , 1992 .

[20]  R. Ghanem,et al.  Multi-resolution analysis of wiener-type uncertainty propagation schemes , 2004 .

[21]  I. Babuska,et al.  Solution of stochastic partial differential equations using Galerkin finite element techniques , 2001 .

[22]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[23]  Knut Petras,et al.  Fast calculation of coefficients in the Smolyak algorithm , 2001, Numerical Algorithms.

[24]  S. Lam,et al.  The CSP method for simplifying kinetics , 1994 .

[25]  R. Ghanem,et al.  Uncertainty propagation using Wiener-Haar expansions , 2004 .

[26]  H. Najm,et al.  Uncertainty quantification in reacting-flow simulations through non-intrusive spectral projection , 2003 .

[27]  Fabio Nobile,et al.  An Anisotropic Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..

[28]  Gaston H. Gonnet,et al.  Scientific Computation , 2009 .

[29]  Xiang Ma,et al.  An adaptive hierarchical sparse grid collocation algorithm for the solution of stochastic differential equations , 2009, J. Comput. Phys..

[30]  Fabio Nobile,et al.  A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007, SIAM Rev..

[31]  Knut Petras,et al.  On the Smolyak cubature error for analytic functions , 2000, Adv. Comput. Math..

[32]  Roger Ghanem,et al.  Stochastic convergence acceleration through basis enrichment of polynomial chaos expansions , 2008 .

[33]  Habib N. Najm,et al.  Higher order corrections in the approximation of low-dimensional manifolds and the construction of simplified problems with the CSP method , 2005 .

[34]  Thomas Gerstner,et al.  Numerical integration using sparse grids , 2004, Numerical Algorithms.

[35]  Baskar Ganapathysubramanian,et al.  Sparse grid collocation schemes for stochastic natural convection problems , 2007, J. Comput. Phys..

[36]  M. Lemaire,et al.  Stochastic finite element: a non intrusive approach by regression , 2006 .

[37]  David Williams,et al.  Probability with Martingales , 1991, Cambridge mathematical textbooks.

[38]  Begnaud Francis Hildebrand,et al.  Introduction to numerical analysis: 2nd edition , 1987 .

[39]  Lionel Mathelin,et al.  Uncertainty quantification in a chemical system using error estimate-based mesh adaption , 2012 .

[40]  Arnold Neumaier,et al.  Introduction to Numerical Analysis , 2001 .

[41]  Arch W. Naylor,et al.  Linear Operator Theory in Engineering and Science , 1971 .

[42]  O. L. Maître,et al.  Spectral Methods for Uncertainty Quantification: With Applications to Computational Fluid Dynamics , 2010 .

[43]  Andreas Keese,et al.  Numerical Solution of Systems with Stochastic Uncertainties : A General Purpose Framework for Stochastic Finite Elements , 2004 .

[44]  Kyle A. Gallivan,et al.  A compressed sensing approach for partial differential equations with random input data , 2012 .

[45]  S. H. Lam,et al.  Understanding complex chemical kinetics with computational singular perturbation , 1989 .

[46]  Dongbin Xiu,et al.  High-Order Collocation Methods for Differential Equations with Random Inputs , 2005, SIAM J. Sci. Comput..