Multiscale Stochastic Preconditioners in Non-intrusive Spectral Projection
暂无分享,去创建一个
Habib N. Najm | Omar M. Knio | Alen Alexanderian | Olivier P. Le Maître | Mohamed Iskandarani | O. L. Maître | H. Najm | O. Knio | A. Alexanderian | M. Iskandarani | O. Maître
[1] O P Le Maître,et al. Spectral stochastic uncertainty quantification in chemical systems , 2004 .
[2] Jefferson W. Tester,et al. Incorporation of parametric uncertainty into complex kinetic mechanisms: Application to hydrogen oxidation in supercritical water , 1998 .
[3] Y. Marzouk,et al. Uncertainty quantification in chemical systems , 2009 .
[4] BabuskaIvo,et al. A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007 .
[5] Hermann G. Matthies,et al. Numerical Methods and Smolyak Quadrature for Nonlinear Stochastic Partial Differential Equations , 2003 .
[6] Habib N. Najm,et al. Multi-Resolution-Analysis Scheme for Uncertainty Quantification in Chemical Systems , 2007, SIAM J. Sci. Comput..
[7] G. Karniadakis,et al. An adaptive multi-element generalized polynomial chaos method for stochastic differential equations , 2005 .
[8] N. Cutland,et al. On homogeneous chaos , 1991, Mathematical Proceedings of the Cambridge Philosophical Society.
[9] O. L. Maître,et al. Asynchronous Time Integration for Polynomial Chaos Expansion of Uncertain Periodic Dynamics , 2010 .
[10] W. T. Martin,et al. The Orthogonal Development of Non-Linear Functionals in Series of Fourier-Hermite Functionals , 1947 .
[11] Fabio Nobile,et al. A Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..
[12] S. Janson. Gaussian Hilbert Spaces , 1997 .
[13] G. Karniadakis,et al. Multi-Element Generalized Polynomial Chaos for Arbitrary Probability Measures , 2006, SIAM J. Sci. Comput..
[14] Dongbin Xiu,et al. The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..
[15] Galen Reeves,et al. “Compressed” compressed sensing , 2010, 2010 IEEE International Symposium on Information Theory.
[16] Emmanuel J. Candès,et al. Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.
[17] L. Mathelin,et al. A Stochastic Collocation Algorithm for Uncertainty Analysis , 2003 .
[18] O. Kallenberg. Foundations of Modern Probability , 2021, Probability Theory and Stochastic Modelling.
[19] S. H. Lam,et al. A study of homogeneous methanol oxidation kinetics using CSP , 1992 .
[20] R. Ghanem,et al. Multi-resolution analysis of wiener-type uncertainty propagation schemes , 2004 .
[21] I. Babuska,et al. Solution of stochastic partial differential equations using Galerkin finite element techniques , 2001 .
[22] R. Ghanem,et al. Stochastic Finite Elements: A Spectral Approach , 1990 .
[23] Knut Petras,et al. Fast calculation of coefficients in the Smolyak algorithm , 2001, Numerical Algorithms.
[24] S. Lam,et al. The CSP method for simplifying kinetics , 1994 .
[25] R. Ghanem,et al. Uncertainty propagation using Wiener-Haar expansions , 2004 .
[26] H. Najm,et al. Uncertainty quantification in reacting-flow simulations through non-intrusive spectral projection , 2003 .
[27] Fabio Nobile,et al. An Anisotropic Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..
[28] Gaston H. Gonnet,et al. Scientific Computation , 2009 .
[29] Xiang Ma,et al. An adaptive hierarchical sparse grid collocation algorithm for the solution of stochastic differential equations , 2009, J. Comput. Phys..
[30] Fabio Nobile,et al. A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007, SIAM Rev..
[31] Knut Petras,et al. On the Smolyak cubature error for analytic functions , 2000, Adv. Comput. Math..
[32] Roger Ghanem,et al. Stochastic convergence acceleration through basis enrichment of polynomial chaos expansions , 2008 .
[33] Habib N. Najm,et al. Higher order corrections in the approximation of low-dimensional manifolds and the construction of simplified problems with the CSP method , 2005 .
[34] Thomas Gerstner,et al. Numerical integration using sparse grids , 2004, Numerical Algorithms.
[35] Baskar Ganapathysubramanian,et al. Sparse grid collocation schemes for stochastic natural convection problems , 2007, J. Comput. Phys..
[36] M. Lemaire,et al. Stochastic finite element: a non intrusive approach by regression , 2006 .
[37] David Williams,et al. Probability with Martingales , 1991, Cambridge mathematical textbooks.
[38] Begnaud Francis Hildebrand,et al. Introduction to numerical analysis: 2nd edition , 1987 .
[39] Lionel Mathelin,et al. Uncertainty quantification in a chemical system using error estimate-based mesh adaption , 2012 .
[40] Arnold Neumaier,et al. Introduction to Numerical Analysis , 2001 .
[41] Arch W. Naylor,et al. Linear Operator Theory in Engineering and Science , 1971 .
[42] O. L. Maître,et al. Spectral Methods for Uncertainty Quantification: With Applications to Computational Fluid Dynamics , 2010 .
[43] Andreas Keese,et al. Numerical Solution of Systems with Stochastic Uncertainties : A General Purpose Framework for Stochastic Finite Elements , 2004 .
[44] Kyle A. Gallivan,et al. A compressed sensing approach for partial differential equations with random input data , 2012 .
[45] S. H. Lam,et al. Understanding complex chemical kinetics with computational singular perturbation , 1989 .
[46] Dongbin Xiu,et al. High-Order Collocation Methods for Differential Equations with Random Inputs , 2005, SIAM J. Sci. Comput..