Ultimate bound sets of a hyperchaotic system and its application in chaos synchronization

In this article, we investigate globally exponentially attractive sets and chaos synchronization for a hyperchaotic system, namely, Lorenz-Stenflo system. For this system, two ellipsoidal globally exponentially attractive sets are derived based on generalized Lyapunov function theory and the extremum principle of function. Furthermore, we propose linear feedback control with a one, two, three, and four inputs to realize globally exponential synchronization of two four-dimesional hyperchaotic systems using inequality techniques. Numerical simulations are presented to show the effectiveness of the proposed synchronization scheme. © 2014 Wiley Periodicals, Inc. Complexity 20: 30-44, 2015

[1]  Jinhu Lu,et al.  Ultimate Bound Estimation of a Class of High Dimensional Quadratic Autonomous Dynamical Systems , 2011, Int. J. Bifurc. Chaos.

[2]  Da Lin,et al.  Module-phase synchronization in complex dynamic system , 2010, Appl. Math. Comput..

[3]  Hassan Saberi Nik,et al.  Chaos control of a bounded 4D chaotic system , 2013, Neural Computing and Applications.

[4]  Giuseppe Grassi,et al.  Synchronizing chaotic systems up to an arbitrary scaling matrix via a single signal , 2012, Appl. Math. Comput..

[5]  Chi-Ching Yang,et al.  One input control of exponential synchronization for a four-dimensional chaotic system , 2013, Appl. Math. Comput..

[6]  Mohammad Pourmahmood Aghababa,et al.  Chaotic fractional-order model for muscular blood vessel and its control via fractional control scheme , 2014, Complex..

[7]  Ying-Cheng Lai,et al.  Controlling chaos , 1994 .

[8]  Chi-Ching Yang Exponential synchronization of a new Lorenz-like attractor with uncertain parameters via single input , 2011, Appl. Math. Comput..

[9]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[10]  Ayub Khan,et al.  Synchronization of circular restricted three body problem with lorenz hyper chaotic system using a robust adaptive sliding mode controller , 2013, Complex..

[11]  Hsien-Keng Chen,et al.  Global chaos synchronization of new chaotic systems via nonlinear control , 2005 .

[12]  Shiuh-Jer Huang,et al.  A new model-free adaptive sliding controller for active suspension system , 2008, Int. J. Syst. Sci..

[13]  Shaolin Tan,et al.  Explicit ultimate bound sets of a new hyperchaotic system and its application in estimating the Hausdorff dimension , 2013 .

[14]  Guanrong Chen,et al.  Complex Dynamical Behaviors of the Chaotic Chen's System , 2003, Int. J. Bifurc. Chaos.

[15]  Lennart Stenflo,et al.  Generalized Lorenz equations for acoustic-gravity waves in the atmosphere , 1996 .

[16]  Saad Fawzi Al-Azzawi,et al.  Stability and bifurcation of pan chaotic system by using Routh-Hurwitz and Gardan methods , 2012, Appl. Math. Comput..

[17]  G. Leonov,et al.  Attraktorlokalisierung des Lorenz-Systems , 1987 .

[18]  Pei Yu,et al.  On the study of globally exponentially attractive set of a general chaotic system , 2008 .

[19]  S. Effati,et al.  Hyperchaos control of the hyperchaotic Chen system by optimal control design , 2013 .

[20]  Fuchen Zhang,et al.  Bounds for a new chaotic system and its application in chaos synchronization , 2011 .

[21]  Long Huang,et al.  Parameters estimation, mixed synchronization, and antisynchronization in chaotic systems , 2014, Complex..

[22]  Tao Fan,et al.  Robust decentralized adaptive synchronization of general complex networks with coupling delayed and uncertainties , 2014, Complex..

[23]  Guanrong Chen,et al.  Estimating the bounds for the Lorenz family of chaotic systems , 2005 .

[24]  Damei Li,et al.  Bounds of the hyper-chaotic Lorenz–Stenflo system , 2010 .

[25]  Guanrong Chen,et al.  Estimating the ultimate bound and positively invariant set for the Lorenz system and a unified chaotic system , 2006 .

[26]  Jiang-Wen Xiao,et al.  Adaptive control and synchronization for a class of nonlinear chaotic systems using partial system states , 2006 .

[27]  Vincenzo Sciacca,et al.  Intermittent and passivity based control strategies for a hyperchaotic system , 2013, Appl. Math. Comput..

[28]  Ying-Jen Chen,et al.  Convergence time guarantee for uncertain chaotic systems synchronisation , 2013, Int. J. Syst. Sci..

[29]  Jigui Jian,et al.  New estimations for ultimate boundary and synchronization control for a disk dynamo system , 2013 .

[30]  S. Effati,et al.  Optimal and adaptive control for a kind of 3D chaotic and 4D hyper-chaotic systems , 2014 .