Exploring the diluted ferromagnetic p-spin model with a cavity master equation.

We introduce an alternative solution to Glauber multispin dynamics on random graphs. The solution is based on the recently introduced cavity master equation (CME), a time-closure turning the, in principle, exact dynamic cavity method into a practical method of analysis and of fast simulation. Running CME once is of comparable computational complexity as one Monte Carlo run on the same problem. We show that CME correctly models the ferromagnetic p-spin Glauber dynamics from high temperatures down to and below the spinoidal transition. We also show that CME allows an alternative exploration of the low-temperature spin-glass phase of the model.

[1]  C. Landim,et al.  Scaling Limits of Interacting Particle Systems , 1998 .

[2]  R. Glauber Time‐Dependent Statistics of the Ising Model , 1963 .

[3]  Florent Krzakala,et al.  Statistical physics of inference: thresholds and algorithms , 2015, ArXiv.

[4]  Steven J. Schiff,et al.  Neural Control Engineering: The Emerging Intersection Between Control Theory and Neuroscience , 2011 .

[5]  E. Aurell,et al.  Cavity master equation for the continuous time dynamics of discrete-spin models. , 2016, Physical review. E.

[6]  E. Aurell,et al.  Perturbative Large Deviation Analysis of Non-Equilibrium Dynamics , 2014, 1401.4685.

[7]  D. Sherrington Stochastic Processes in Physics and Chemistry , 1983 .

[8]  M. Nowak Evolutionary Dynamics: Exploring the Equations of Life , 2006 .

[9]  A. Montanari,et al.  Cooling-schedule dependence of the dynamics of mean-field glasses , 2004, cond-mat/0401649.

[10]  A. Onuki Phase Transition Dynamics: Statics , 2002 .

[11]  M. Mézard,et al.  A ferromagnet with a glass transition , 2001, cond-mat/0103026.

[12]  A. Coolen,et al.  Dynamical replica analysis of processes on finitely connected random graphs: II. Dynamics in the Griffiths phase of the diluted Ising ferromagnet , 2009, 0901.0788.

[13]  D. Sherrington,et al.  Order-Parameter Flow in the SK Spin-Glass II: Inclusion of Microscopic Memory Effects , 1996 .

[14]  Dynamical Probability Distribution Function of the SK Model at High Temperatures , 1995, cond-mat/9512167.

[15]  Patrick van der Smagt,et al.  Introduction to neural networks , 1995, The Lancet.

[16]  R. Axelrod,et al.  Evolutionary Dynamics , 2004 .

[17]  A. Coolen,et al.  Dynamical replica analysis of disordered Ising spin systems on finitely connected random graphs. , 2005, Physical review letters.

[18]  Peter Sollich,et al.  General solutions for multispin two-time correlation and response functions in the Glauber-Ising chain , 2004 .

[19]  M. Mézard,et al.  Information, Physics, and Computation , 2009 .

[20]  A. Coolen,et al.  Dynamical replica analysis of processes on finitely connected random graphs: I. Vertex covering , 2007, 0712.1139.

[21]  D. Amit Modelling Brain Function: The World of Attractor Neural Networks , 1989 .

[22]  Akira Onuki,et al.  Phase Transition Dynamics , 2000 .

[23]  Peter Sollich,et al.  Theory of Neural Information Processing Systems , 2005 .

[24]  M. Weigt,et al.  Approximation schemes for the dynamics of diluted spin models: the Ising ferromagnet on a Bethe lattice , 2004, cond-mat/0402451.