Pushing the Envelope of Optimization Modulo Theories with Linear-Arithmetic Cost Functions
暂无分享,去创建一个
[1] A. J. Goldman,et al. Technical Note - Recognizing Unbounded Integer Programs , 1987, Oper. Res..
[2] Gilles Audemard,et al. Bounded Model Checking for Timed Systems , 2002, FORTE.
[3] Alessandro Cimatti,et al. SAT-Based Bounded Model Checking for Timed Systems , 2002 .
[4] Niklas Sörensson,et al. An Extensible SAT-solver , 2003, SAT.
[5] Marco Bozzano,et al. Verifying Industrial Hybrid Systems with MathSAT , 2005, BMC@CAV.
[6] Marco Bozzano,et al. Efficient theory combination via boolean search , 2006, Inf. Comput..
[7] Cesare Tinelli,et al. Solving SAT and SAT Modulo Theories: From an abstract Davis--Putnam--Logemann--Loveland procedure to DPLL(T) , 2006, JACM.
[8] Albert Oliveras,et al. On SAT Modulo Theories and Optimization Problems , 2006, SAT.
[9] Bruno Dutertre,et al. A Fast Linear-Arithmetic Solver for DPLL(T) , 2006, CAV.
[10] Vasco M. Manquinho,et al. Pseudo-Boolean and Cardinality Constraints , 2021, Handbook of Satisfiability.
[11] Inês Lynce,et al. Conflict-Driven Clause Learning SAT Solvers , 2009, Handbook of Satisfiability.
[12] Toby Walsh,et al. Handbook of satisfiability , 2009 .
[13] Alberto Griggio,et al. Satisfiability Modulo the Theory of Costs: Foundations and Applications , 2010, TACAS.
[14] Isil Dillig,et al. Minimum Satisfying Assignments for SMT , 2012, CAV.
[15] Alberto Griggio,et al. The MathSAT 5 SMT Solver ⋆ , 2012 .
[16] Roberto Sebastiani,et al. Optimization in SMT with LA(Q) Cost Functions , 2012 .
[17] Alberto Griggio,et al. A Practical Approach to Satisability Modulo Linear Integer Arithmetic , 2012, J. Satisf. Boolean Model. Comput..
[18] Panagiotis Manolios,et al. ILP Modulo Theories , 2012, CAV.
[19] Alberto Griggio,et al. The MathSAT5 SMT Solver , 2013, TACAS.
[20] Alberto Griggio,et al. A Modular Approach to MaxSAT Modulo Theories , 2013, SAT.
[21] Nikolaj Bjørner,et al. νZ - Maximal Satisfaction with Z3 , 2014, SCSS.
[22] Marsha Chechik,et al. Symbolic optimization with SMT solvers , 2014, POPL.
[23] Daniel Larraz,et al. Minimal-Model-Guided Approaches to Solving Polynomial Constraints and Extensions , 2014, SAT.
[24] Silvia Tomasi,et al. Optimization Modulo Theories with Linear Rational Costs , 2014, ACM Trans. Comput. Log..