Efficient time integration for discontinuous Galerkin approximations of linear wave equations
暂无分享,去创建一个
Christian Wieners | Marlis Hochbruck | M. Hochbruck | C. Wieners | Tomislav Pazur | A. Schulz | E. Thawinan | Tomislav Pažur | Andreas Schulz | Ekkachai Thawinan
[1] R. LeVeque. Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .
[2] P. M. van den Berg,et al. A modified Lanczos algorithm for the computation of transient electromagnetic wavefields , 1997 .
[3] Marlis Hochbruck,et al. Preconditioning Lanczos Approximations to the Matrix Exponential , 2005, SIAM J. Sci. Comput..
[4] Marlis Hochbruck,et al. Residual, Restarting, and Richardson Iteration for the Matrix Exponential , 2010, SIAM J. Sci. Comput..
[5] A. Ern,et al. Mathematical Aspects of Discontinuous Galerkin Methods , 2011 .
[6] Arne Taube,et al. A high-order discontinuous Galerkin method with time-accurate local time stepping for the Maxwell equations , 2009 .
[7] Christian Wieners,et al. Distributed Point Objects. A New Concept for Parallel Finite Elements , 2005 .
[8] Rainald Löhner,et al. A p-multigrid discontinuous Galerkin method for the Euler equations on unstructured grids , 2006 .
[9] Volker Grimm,et al. Convergence Analysis of an Extended Krylov Subspace Method for the Approximation of Operator Functions in Exponential Integrators , 2013, SIAM J. Numer. Anal..
[10] Awad H. Al-Mohy,et al. Computing the Action of the Matrix Exponential, with an Application to Exponential Integrators , 2011, SIAM J. Sci. Comput..
[11] Timothy C. Warburton,et al. Nodal discontinuous Galerkin methods on graphics processors , 2009, J. Comput. Phys..
[12] Stefan Güttel,et al. Deflated Restarting for Matrix Functions , 2011, SIAM J. Matrix Anal. Appl..
[13] C. Lubich,et al. On Krylov Subspace Approximations to the Matrix Exponential Operator , 1997 .
[14] Thomas Bohlen,et al. On the propagation characteristics of tunnel surface‐waves for seismic prediction , 2010 .
[15] E. Hairer,et al. Solving Ordinary Differential Equations II , 2010 .
[16] N. Higham. Functions Of Matrices , 2008 .
[17] G. Folland. Introduction to Partial Differential Equations , 1976 .
[18] S. Güttel. Rational Krylov approximation of matrix functions: Numerical methods and optimal pole selection , 2013 .
[19] Roger B. Sidje,et al. Expokit: a software package for computing matrix exponentials , 1998, TOMS.
[20] Chi-Wang Shu,et al. Strong Stability-Preserving High-Order Time Discretization Methods , 2001, SIAM Rev..
[21] Christian Wieners,et al. A geometric data structure for parallel finite elements and the application to multigrid methods with block smoothing , 2010, Comput. Vis. Sci..
[22] J. Hesthaven,et al. Nodal high-order methods on unstructured grids , 2002 .
[23] Yousef Saad,et al. Efficient Solution of Parabolic Equations by Krylov Approximation Methods , 1992, SIAM J. Sci. Comput..
[24] Rob Remis,et al. A Krylov Stability-Corrected Coordinate-Stretching Method to Simulate Wave Propagation in Unbounded Domains , 2012, SIAM J. Sci. Comput..
[25] Miguel A. Fernández,et al. Explicit Runge-Kutta Schemes and Finite Elements with Symmetric Stabilization for First-Order Linear PDE Systems , 2010, SIAM J. Numer. Anal..
[26] L. Fezoui,et al. Convergence and stability of a discontinuous galerkin time-domain method for the 3D heterogeneous maxwell equations on unstructured meshes , 2005 .
[27] Jaap J. W. van der Vegt,et al. Dispersion and Dissipation Error in High-Order Runge-Kutta Discontinuous Galerkin Discretisations of the Maxwell Equations , 2007, J. Sci. Comput..
[28] Davit Harutyunyan,et al. The Gautschi Time Stepping Scheme for Edge Finite Element Discretization of the Maxwell Equations , 2005 .
[29] Philippe Villedieu,et al. Convergence of an explicit finite volume scheme for first order symmetric systems , 2003, Numerische Mathematik.
[30] Christian Wieners,et al. A parallel block LU decomposition method for distributed finite element matrices , 2011, Parallel Comput..
[31] Marcus J. Grote,et al. Explicit local time-stepping methods for Maxwell's equations , 2010, J. Comput. Appl. Math..
[32] Nicholas J. Higham,et al. Functions of matrices - theory and computation , 2008 .
[33] E. Hairer,et al. Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .
[34] M. Dumbser,et al. An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes - I. The two-dimensional isotropic case with external source terms , 2006 .
[35] J. Hesthaven,et al. Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications , 2007 .
[36] Vladimir Druskin,et al. Solution of time-convolutionary Maxwell's equations using parameter-dependent Krylov subspace reduction , 2010, J. Comput. Phys..
[37] R. Rogers,et al. An introduction to partial differential equations , 1993 .
[38] Y. Saad. Analysis of some Krylov subspace approximations to the matrix exponential operator , 1992 .
[39] R. Nagel,et al. A Short Course on Operator Semigroups , 2006 .
[40] Fernando Reitich,et al. High-order RKDG Methods for Computational Electromagnetics , 2005, J. Sci. Comput..
[41] Lilia Krivodonova,et al. An efficient local time-stepping scheme for solution of nonlinear conservation laws , 2010, J. Comput. Phys..
[42] Volker Grimm. Resolvent Krylov subspace approximation to operator functions , 2012 .
[43] Marlis Hochbruck,et al. Implicit Runge-Kutta Methods and Discontinuous Galerkin Discretizations for Linear Maxwell's Equations , 2015, SIAM J. Numer. Anal..