On the Mathematical Reconstruction of Two Dimensional Plants

A set of 10, chosen medicinal plants (some of them with a reputation as remedies for tuberculosis) has been investigated through Partitioned Iterated Function Systems-Semi Fractals with Angle (PIFS-SFA) coding, Lempel, Ziv, Welch with quantization and noise (LZW-QN) compression, and surface density statistics (f(α)-SDS) discrimination techniques. The final outcomes of this quantitative analysis were, firstly: the linear ordering of the plants in question accompanied by the hope that it reflects their medical significance, secondly: the mathematical representation of each of the plants, and thirdly: the impressive compression achieved, leading to remarkable computer memory saving, and still permitting successful pattern recognition i.e., proper identification of the plant from the compressed image.

[1]  Allen Gersho,et al.  Vector quantization and signal compression , 1991, The Kluwer international series in engineering and computer science.

[2]  Donal J. Denvir,et al.  Electron-multiplying CCD technology: application to ultrasensitive detection of biomolecules , 2002, SPIE BiOS.

[3]  Michael F. Barnsley,et al.  Fractals everywhere , 1988 .

[4]  W. Eric L. Grimson,et al.  On the Sensitivity of the Hough Transform for Object Recognition , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  G. W. Snedecor Statistical Methods , 1964 .

[6]  Jack Sklansky,et al.  On the Hough Technique for Curve Detection , 1978, IEEE Transactions on Computers.

[7]  L. Bremness The complete book of herbs , 1988 .

[8]  Donal J. Denvir,et al.  Electron multiplying CCD technology: The new ICCD , 2003 .

[9]  J. Sterne,et al.  Essential Medical Statistics , 2003 .

[10]  J. Lust The Herb Book , 1974 .

[11]  E. Ott Chaos in Dynamical Systems: Contents , 1993 .

[12]  C. Sarraf,et al.  Review : Apoptosis: regulation and relevance to toxicology , 1995 .

[13]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[14]  Abraham Lempel,et al.  A universal algorithm for sequential data compression , 1977, IEEE Trans. Inf. Theory.

[15]  G. A. Edgar Measure, Topology, and Fractal Geometry , 1990 .

[16]  Antonio Turiel Relevance of multifractal textures in static images , 2003 .

[17]  Terry A. Welch,et al.  A Technique for High-Performance Data Compression , 1984, Computer.

[18]  C. Sarraf,et al.  Apoptosis: regulation and relevance to toxicology. , 1995, Human & experimental toxicology.

[19]  H. Abut,et al.  Vector Quantization , 1990 .

[20]  Joan L. Mitchell,et al.  JPEG: Still Image Data Compression Standard , 1992 .

[21]  Mark R. Nelson,et al.  LZW data compression , 1989 .

[22]  Wan-Chi Siu,et al.  A New Generalized Hough Transform for the Detection of Irregular Objects , 1995, J. Vis. Commun. Image Represent..

[23]  Khalid Sayood,et al.  Introduction to Data Compression , 1996 .

[24]  John Miano,et al.  Compressed image file formats - JPEG, PNG, GIF, XBM, BMP , 1999 .

[25]  On some structure–morphology problems by the extended partitioned iterated function system (PIFS-SF) , 2002 .

[26]  Roger E. Kirk,et al.  Statistics: An Introduction , 1998 .

[27]  Zbigniew J. Grzywna,et al.  On the Application of PIFS-SF and D q (f(α )) to Dendrites Analysis , 2003 .

[28]  H. Stanley,et al.  I Fractals and multifractals: the interplay of Physics and Geometry , 1991 .

[29]  A. E. Jacquin Fractal image coding : a review : Fractals in electrical engineering , 1993 .

[30]  Robert Everist Greene,et al.  Introduction to Topology , 1983 .

[31]  John Miano,et al.  Compressed image file formats , 1999 .