Ustilago maydis, the Causative Agent of Corn Smut Disease

Smut diseases are caused by Basidiomycetes of the order Ustilaginales. Their occurrence is worldwide and cereals and grasses serve as most common hosts. Among the estimated 1100 species of smut fungi the most prevalent causing significant losses in yield are of the genus Ustilago, causing loose smut of oats (U. avenae),barley (U. nuda) and wheat (U. tritici), covered smut of barley and oats (U. hordei), causing corn (U. maydis) and sugarcane smut (U. scitaminea), respectively; of the genus Tilletia inducing covered smut or bunt of wheat (T. caries and T. foetida), dwarf bunt of wheat (T. contraversa); and of the genus Sporisorium causing smut diseases in sorghum as well as head smut in sorghum and corn (see Agrios, 1988). In general, the host range of most smut fungi is rather narrow and only closely related plant species are infected. Many smut fungi develop within the grain kernels and replace them with masses of dark teliospores resembling smut or soot, giving the name to this disease. As a result considerable losses in yield are encountered and healthy seed is contaminated with spores during harvest. While some smuts infect germinating seedlings and grow internally without causing symptoms until flowering occurs others are able to infect all aerial parts of the plant and cause local disease symptoms around the site of infection. The most prominent disease symptoms are inflorescences which are completely smutted and in which all individual kernels are replaced by masses of dark teliospores. Initially the developing spores are surrounded by a membrane that breaks when teliospore development is completed and sets free the massive amounts of spores. In other instances, like infections with U. maydis,spore development takes place within plant tumors that are induced by the fungus and appear to provide the ideal environment for fungal proliferation and teliospore production. Teliospores developing within the infected tissue are invariably diploid. Upon germination meiosis takes place and the haploid form, the so-called sporidium is generated. These haploid forms can be propagated on artificial media in the laboratory, however, this form is unable to cause disease when applied to host plants in pure culture. Prerequisite for generating the infectious stage is the mating of two compatible, haploid sporidia and the generation of the dikaryon. In contrast to the haploid form this stage cannot be propagated outside the host plant. Once in contact with the plant characteristic infection structures are produced that allow penetration and subsequent proliferation within the infected plant. This leads to the characteristic disease symptoms already described and culminates with the formation of teliospores which represent the resting stage able to survive harsh environmental conditions like drought and winter.

[1]  R. Kahmann,et al.  Crosstalk between cAMP and pheromone signalling pathways in Ustilago maydis , 1998, Molecular and General Genetics MGG.

[2]  J. Ruiz-Herrera,et al.  Yeast-mycelial dimorphism of haploid and diploid strains of Ustilago maydis , 1995 .

[3]  S. Anagnostakis,et al.  Pathogenicity resulting from mutation at the b locus of Ustilago maydis. , 1971, Proceedings of the National Academy of Sciences of the United States of America.

[4]  J. Wessels Fungal hydrophobins: proteins that function at an interface , 1996 .

[5]  M. Estelle,et al.  Molecular Genetic Approaches to Plant Hormone Biology , 1991 .

[6]  MISHA BLACK,et al.  Design Education in Great Britain , 1971, Nature.

[7]  F. Lottspeich,et al.  A novel class of small amphipathic peptides affect aerial hyphal growth and surface hydrophobicity in Ustilago maydis. , 1996, The EMBO journal.

[8]  G. Bakkeren,et al.  The pheromone cell signaling components of the Ustilago a mating-type loci determine intercompatibility between species. , 1996, Genetics.

[9]  M. Bölker,et al.  Identification of a motor protein required for filamentous growth in Ustilago maydis , 1997, The EMBO journal.

[10]  J. Staden,et al.  Extraction of cytokinins from maize, smut tumors of maize and Ustilago maydis cultures , 1978 .

[11]  D. McCarty,et al.  Integrated control of seed maturation and germination programs by activator and repressor functions of Viviparous-1 of maize. , 1995, Genes & development.

[12]  J. Callow,et al.  Histology of neoplasms and chlorotic lesions in maize seedlings following the injection of sporidia of Ustilago maydis (DC) Corda , 1973 .

[13]  A. Lichter,et al.  Fil1, a G-protein α-subunit that acts upstream of cAMP and is essential for dimorphic switching in haploid cells of Ustilago hordei , 1997, Molecular and General Genetics MGG.

[14]  M. Bittner,et al.  Expression profiling using cDNA microarrays , 1999, Nature Genetics.

[15]  J. Kronstad,et al.  Mutation in a heat‐regulated hsp70 gene of Ustilago maydis. , 1989, The EMBO journal.

[16]  F. Lottspeich,et al.  Two potential indole-3-acetaldehyde dehydrogenases in the phytopathogenic fungus Ustilago maydis. , 1996, European journal of biochemistry.

[17]  W. Holloman,et al.  Isolation and characterization of an autonomously replicating sequence from Ustilago maydis , 1988, Molecular and cellular biology.

[18]  U. Kües,et al.  Mating-Type Genes in Homobasidiomycetes , 1994 .

[19]  J. Walton,et al.  Cloning, disruption, and expression of two endo-beta 1, 4-xylanase genes, XYL2 and XYL3, from Cochliobolus carbonum , 1996, Applied and environmental microbiology.

[20]  I. Herskowitz,et al.  Morphological transitions in the life cycle of Ustilago maydis and their genetic control by the a and b loci , 1994 .

[21]  M. Biggin,et al.  Eve and ftz regulate a wide array of genes in blastoderm embryos: the selector homeoproteins directly or indirectly regulate most genes in Drosophila. , 1998, Development.

[22]  A. W. Day,et al.  ‘Fimbriae’ in the fungus Ustilago violacea , 1974, Nature.

[23]  M. Feldbrügge,et al.  Fungal-plant signalling in the Ustilago maydis-maize pathosystem. , 1999, Current opinion in microbiology.

[24]  J. Tinsley,et al.  Cytoplasmic dynein and actin-related protein Arp1 are required for normal nuclear distribution in filamentous fungi , 1994, The Journal of cell biology.

[25]  D. McLaughlin,et al.  Ultrastructure of meiosis in Ustilago maydis , 1984 .

[26]  J. Rowell Functional role of compatibility factors and an in vitro test for sexual compatibility with haploid lines of Ustilago zeae , 1955 .

[27]  J. E. Puhalla Compatibility reactions on solid medium and interstrain inhibition in Ustilago maydis. , 1968, Genetics.

[28]  E. Billett,et al.  The host-parasite physiology of the maize smut fungus, Ustilago maydis II. Translocation of 14C-labelled assimilates in smutted maize plants , 1978 .

[29]  R. Kahmann,et al.  Green fluorescent protein (GFP) as a new vital marker in the phytopathogenic fungus , 1996 .

[30]  K. O'donnell Ultrastructure of meiosis and the spindle pole body cycle in freeze-substituted basidia of the smut fungi Ustilago maydis and Ustilago avenae , 1992 .

[31]  S. Gold,et al.  A MAP kinase encoded by the ubc3 gene of Ustilago maydis is required for filamentous growth and full virulence , 1999, Molecular microbiology.

[32]  R Y Tsien,et al.  Understanding, improving and using green fluorescent proteins. , 1995, Trends in biochemical sciences.

[33]  I. Herskowitz,et al.  Identification of fuz7, a Ustilago maydis MEK/MAPKK homolog required for a-locus-dependent and -independent steps in the fungal life cycle. , 1994, Genes & development.

[34]  P. Robbins,et al.  Umchs5, a gene coding for a class IV chitin synthase in Ustilago maydis. , 1997, Fungal genetics and biology : FG & B.

[35]  J. Ruiz-Herrera,et al.  Structure and chemical composition of the cell walls from the haploid yeast and mycelial forms of Ustilago maydis. , 1996, Fungal genetics and biology : FG & B.

[36]  K. Snetselaar Microscopic Observation of Ustilago maydis Mating Interactions , 1993 .

[37]  Guus Bakkerena,et al.  Conservation of the b mating-type gene complex among bipolar and tetrapolar smut fungi. , 1993, The Plant cell.

[38]  R. Holliday The genetics of Ustilago maydis , 1961 .

[39]  K. Snetselaar,et al.  Sporidial Fusion and Infection of Maize Seedlings by the Smut Fungus Ustilago Maydis , 1992 .

[40]  H. Kawaide,et al.  Gibberellin biosynthesis in Gibberella fujikuroi: cloning and characterization of the copalyl diphosphate synthase gene , 1998, Current Genetics.

[41]  G. Fink,et al.  The control of filamentous differentiation and virulence in fungi. , 1998, Trends in cell biology.

[42]  C. Staben,et al.  Mating type in filamentous fungi. , 1997, Annual review of genetics.

[43]  L. Mills,et al.  Scanning electron microscopy of the germination, growth and infection of Ustilago maydis on maize. , 1981 .

[44]  F. Lottspeich,et al.  Pheromones trigger filamentous growth in Ustilago maydis. , 1994, The EMBO journal.

[45]  Jianhua Xu,et al.  Multiple Forms of Fimbriae on the Sporidia of Corn Smut, Ustilago maydis , 1992, International Journal of Plant Sciences.

[46]  J. Kronstad,et al.  Dual Sets of Chimeric Alleles Identify Specificity Sequences for the bE and bW Mating and Pathogenicity Genes of Ustilago maydis , 1998, Molecular and Cellular Biology.

[47]  A. Banham,et al.  Heterodimerization between two classes of homeodomain proteins in the mushroom Coprinus cinereus brings together potential DNA-binding and activation domains. , 1996, Gene.

[48]  J. Kämper,et al.  Multiallelic recognition: Nonself-dependent dimerization of the bE and bW homeodomain proteins in ustilago maydis , 1995, Cell.

[49]  K. Snetselaar,et al.  Using microdensitometry to correlate cell morphology with the nuclear cycle in Ustilago maydis. , 1997 .

[50]  J. Ruiz-Herrera,et al.  Two chitin synthase genes from Ustilago maydis. , 1996, Microbiology.

[51]  J. Hargreaves,et al.  A gene encoding γ-adaptin is required for apical extension growth in Ustilago maydis , 1995 .

[52]  S. Gold,et al.  The Ustilago maydis regulatory subunit of a cAMP-dependent protein kinase is required for gall formation in maize. , 1997, The Plant cell.

[53]  B. Tudzynski Biosynthesis of gibberellins in Gibberella fujikuroi: biomolecular aspects , 1999, Applied Microbiology and Biotechnology.

[54]  J. Kronstad,et al.  Identification of a cAMP-dependent protein kinase catalytic subunit required for virulence and morphogenesis in Ustilago maydis. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[55]  T. Tsukiyama,et al.  Chromatin remodeling and transcription. , 1997, Current opinion in genetics & development.

[56]  F. Banuett Ustilago maydis, the delightful blight. , 1992, Trends in genetics : TIG.

[57]  F. Lottspeich,et al.  Environmental Signals Controlling Sexual Development of the Corn Smut Fungus Ustilago maydis through the Transcriptional Regulator Prf1 , 1999, Plant Cell.

[58]  R. Kahmann,et al.  Genetic Regulation of Mating and Dimorphism in Ustilago Maydis , 1995 .

[59]  C. M. G. Duthoit SLUGS AND FOOD PREFERENCES , 1964 .

[60]  T. Petes,et al.  Integration of DNA fragments by illegitimate recombination in Saccharomyces cerevisiae. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[61]  R. Kahmann,et al.  Filament-specific expression of a cellulase gene in the dimorphic fungus Ustilago maydis. , 1995, Biological chemistry Hoppe-Seyler.

[62]  J. Kronstad,et al.  The b mating-type locus of Ustilago maydis contains variable and constant regions. , 1990, Genes & development.

[63]  R. Holliday INDUCED MITOTIC CROSSING-OVER IN RELATION TO GENETIC REPLICATION IN SYNCHRONOUSLY DIVIDING CELLS OF USTILAGO MAYDIS. , 1965, Genetical research.

[64]  J. McIntosh,et al.  Kinesin from the plant pathogenic fungus Ustilago maydis is involved in vacuole formation and cytoplasmic migration. , 1998, Journal of cell science.

[65]  M. Bölker,et al.  The pheromone response factor coordinates filamentous growth and pathogenicity in Ustilago maydis. , 1996, The EMBO journal.

[66]  C. W. Jacobs,et al.  Budding patterns during the cell cycle of the maize smut pathogen Ustilago maydis. , 1994 .

[67]  A. Osbourn,et al.  Advances in Molecular Genetics of Plant-Microbe Interactions , 1994, Current Plant Science and Biotechnology in Agriculture.

[68]  J. Kronstad,et al.  The ukc1 gene encodes a protein kinase involved in morphogenesis, pathogenicity and pigment formation in Ustilago maydis , 1999, Molecular and General Genetics MGG.

[69]  F. T. Wolf The Production of Indole Acetic Acid by Ustilago Zeae, and Its Possible Significance in Tumor Formation. , 1952, Proceedings of the National Academy of Sciences of the United States of America.

[70]  J. Kämper,et al.  The homeodomains of the heterodimeric bE and bW proteins of Ustilago maydis are both critical for function , 1997, Molecular and General Genetics MGG.

[71]  I. Herskowitz,et al.  Different a alleles of Ustilago maydis are necessary for maintenance of filamentous growth but not for meiosis. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[72]  P. D. de Wit,et al.  Fungal avirulence genes: structure and possible functions. , 1998, Fungal genetics and biology : FG & B.

[73]  K. Snetselaar,et al.  Light and electron microscopy of Ustilago maydis hyphae in maize. , 1994 .

[74]  I. Herskowitz,et al.  Discrete developmental stages during teliospore formation in the corn smut fungus, Ustilago maydis. , 1996, Development.

[75]  A. Pardee,et al.  Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. , 1992, Science.

[76]  R. Young,et al.  Classification of fungal chitin synthases. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[77]  R. Kahmann,et al.  Characterization of a Ustilago maydisGene Specifically Induced during the Biotrophic Phase: Evidence for Negative as Well as Positive Regulation , 2000, Molecular and Cellular Biology.

[78]  S. Gold,et al.  Disruption of two genes for chitin synthase in the phytopathogenic fungus Ustilago maydis , 1994, Molecular microbiology.

[79]  A. W. Day,et al.  Fungal fimbriae. II. Their role in conjugation in Ustilago violacea. , 1975, Canadian journal of microbiology.

[80]  J. Kämper,et al.  Single-chain fusions of two unrelated homeodomain proteins trigger pathogenicity in Ustilago maydis. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[81]  D. Holden,et al.  Gene transfer system for the phytopathogenic fungus Ustilago maydis. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[82]  M. Bölker,et al.  G proteins in Ustilago maydis: transmission of multiple signals? , 1997, The EMBO journal.

[83]  I. Herskowitz,et al.  The b alleles of U. maydis, whose combinations program pathogenic development, code for polypeptides containing a homeodomain-related motif , 1990, Cell.

[84]  H. Fletcher A search for synaptonemal complexes in Ustilago maydis. , 1981, Journal of cell science.

[85]  S. Gold,et al.  cAMP regulates morphogenesis in the fungal pathogen Ustilago maydis. , 1994, Genes & development.

[86]  J. E. Puhalla Genetic studies of the b incompatability locus of Ustilago maydis , 1970 .

[87]  I. Herskowitz,et al.  The a locus governs cytoduction in Ustilago maydis , 1992, Journal of bacteriology.

[88]  S. Anagnostakis,et al.  Corn smut dikaryon in culture. , 1971, Nature: New biology.

[89]  B. Gibbard,et al.  The a and b loci of Ustilago maydis hybridize with DNA sequences from other smut fungi. , 1992, Molecular plant-microbe interactions : MPMI.

[90]  A. Laroche,et al.  Origins and inheritance of chromosome-length polymorphisms in the barley covered smut fungus, Ustilago hordei , 1998, Current Genetics.

[91]  K. Snetselaar,et al.  Infection of maize stigmas by Ustilago maydis: light and electron microscopy , 1993 .

[92]  J. Kronstad,et al.  Construction of chimeric alleles with altered specificity at the b incompatibility locus of Ustilago maydis. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[93]  H. Ehrlich Nuclear Behavior in Mycelium of a Solopathogenic Line and in a Cross of Two Haploid Lines of Ustilago Maydis (DC.) Cda. , 1958 .

[94]  K. Wells,et al.  Modified bifactorial incompatibility in Tremella mesenterica , 1985 .

[95]  F. Banuett Identification of genes governing filamentous growth and tumor induction by the plant pathogen Ustilago maydis. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[96]  Bolker,et al.  Ustilago maydis Mating Hyphae Orient Their Growth toward Pheromone Sources , 1996, Fungal genetics and biology : FG & B.

[97]  Steinberg Organelle transport and molecular motors in fungi , 1998, Fungal genetics and biology : FG & B.

[98]  Puhalla Je The formation of diploids of Ustilago maydis on agar medium. , 1969 .

[99]  G. Bakkeren,et al.  Linkage of mating-type loci distinguishes bipolar from tetrapolar mating in basidiomycetous smut fungi. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[100]  M. Bölker,et al.  The a mating type locus of U. maydis specifies cell signaling components , 1992, Cell.

[101]  A. W. Day,et al.  Fungal fimbriae. I. Structure, origin, and synthesis. , 1975, Canadian journal of microbiology.

[102]  S. Leong,et al.  sid1, a gene initiating siderophore biosynthesis in Ustilago maydis: molecular characterization, regulation by iron, and role in phytopathogenicity. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[103]  B. Gillissen,et al.  A two-component regulatory system for self/non-self recognition in Ustilago maydis , 1992, Cell.

[104]  R. H. Hamilton,et al.  Chemical detection of 3-indolylacetic acid in Ustilago zeae tumors. , 1960, Biochimica et biophysica acta.

[105]  M. Feldbrügge,et al.  The MAP kinase Kpp2 regulates mating and pathogenic development in Ustilago maydis , 1999, Molecular microbiology.

[106]  K. Yamamoto,et al.  Regulatory crosstalk at composite response elements. , 1991, Trends in biochemical sciences.