Mimicking the Vancomycin Carboxylate Binding Site: Synthetic receptors for sulfonates, carboxylates, and N-protected α-amino acids in water

The novel H2O-soluble cyclophanes 1 and 2 incorporating different anion-recognition sites were prepared in short synthetic routes (Schemes 1 and 2) as first-generation mimics of the natural, D-Ala-D-Ala binding antibiotic vancomycin. The X-ray crystal structure of 1, a tris(hydrochloride)salt, revealed an open, preorganized cavity of sufficient size for the incorporation of small aliphatic residues (Fig. 3). In the crystal, molecules of 1 are arranged in parallel stacks, generating two types of channels, an ‘intra-stack’ channel passing through the cyclophane cavities and an ‘inter-stack’ channel located between cyclophane stacks (Fig. 4). The strongest intermolecular interactions between macrocycles in the crystal are CO…HN H-bonds between the carboxamide residues of adjacent cyclophanes in neighboring stacks (Fig. 5). The ‘intra-’ and ‘inter-stack’ channels incorporate the three ordered Cl− counterions and several, partially ordered solvent molecules (4 MeOH, 1 H2O) (Fig. 6). Counterion Cl(2) is located within the ‘intra-stack’ channel and interacts with a protonated piperazinium N-atom and both ‘intra-stack’ MeOH molecules. The two other counterions, Cl(1) and Cl(3), are located within the ‘inter-stack’ channel. They are connected to two MeOH and one H2O molecules and also interact both with the NH group of the protonated spiropiperidinium ring in 1, forming an infinite, chain-like H-bonding network …Cl(1)…HOH…MeOH…Cl(3)…HNH…Cl(1′)…. Both ‘intra-’ and ‘inter-stack’ MeOH molecules undergo weak CH…π interactions with neighboring aromatic rings. Cyclophane 1 complexed aromatic sulfonates in 0.5M KCl/DCl buffer in D2O, whereas the tetrakis(quaternary ammonium) receptor 2 bound the sodium salts of aliphatic and aromatic carboxylates and sulfonates, of N-acylated α-amino acids as well as of N-acetyl-D-alanyl-D-alanine (Ac-D-Ala-D-Ala), a substrate of vancomycin, in pure H2O. In all of these complexes, ion pairing between the cationic recognition site in the periphery of the cyclophane receptor and the anionic substrates represents the major driving force for host-guest association. The 1H-NMR analysis of complexation-induced changes in chemical shift clearly demonstrated that, in solution, this ion pairing exclusively takes place outside the cavity. Nevertheless, the macrocyclic bridges are essential for the efficiency of the anion-recognition sites in the two cyclophane receptors 1 and 2. Control compounds 3 and 4 possess nearly the same anion-recognition sites than 1 and 2, but lack their macrocyclic preorganization; as a consequence, they do not form stable ion-pairing complexes with mono-anionic substrates in the considered concentration ranges ( < 50 mM) in D2O.

[1]  C. Walsh,et al.  Bacterial resistance to vancomycin: five genes and one missing hydrogen bond tell the story. , 1996, Chemistry & biology.

[2]  C. Roxburgh The Syntheses of Large-Ring Compounds , 1996 .

[3]  M. Ghadiri,et al.  SUPRAMOLECULAR DESIGN BY COVALENT CAPTURE. DESIGN OF A PEPTIDE CYLINDER VIA HYDROGEN-BOND-PROMOTED INTERMOLECULAR OLEFIN METATHESIS , 1995 .

[4]  S. Nishiyama,et al.  Interaction between bacterial cell wall model and aglucovancomycin or its synthetic analogs , 1995 .

[5]  F. Menger,et al.  Octacationic Cyclophanes: Binding of ATP and Other Anionic Guests in Water , 1995 .

[6]  F. M. Menger,et al.  Octakationische Cyclophane: Bindung von ATP und anderen anionischen Gastmolekülen in Wasser , 1995 .

[7]  F. Toda Chiral Lock and Chiral Key in Inclusion Crystals , 1995 .

[8]  D. Williams,et al.  Cooperativity between non-polar and ionic forces in the binding of bacterial cell wall analogues by vancomycin in aqueous solution. , 1995, The Journal of antibiotics.

[9]  F. Diederich,et al.  Chiral 1,1′‐Binaphthyl Molecular Clefts for the Complexation of Excitatory Amino‐Acid Derivatives , 1995 .

[10]  M. Nishio,et al.  The CH/π interaction: Significance in molecular recognition , 1995 .

[11]  W. C. Still,et al.  Enantioselective recognition by a new chiral stationary phase at receptorial level , 1995 .

[12]  W. C. Still,et al.  Sequence-Selective Binding of Peptides in Water by a Synthetic Receptor Molecule , 1995 .

[13]  E. Kimura,et al.  Molecular Recognition of Terephthalic Acid by Supramolecular Self‐Assembly of an Acridine‐Pendant Cyclen–ZnII Complex , 1995 .

[14]  F. Diederich,et al.  Molecular Clefts Derived from 9,9′‐spirobi[9H‐fluorene] for enantioselective complexation of pyranosides and dicarboxylic acids , 1995 .

[15]  E. Kimura,et al.  Molekulare Erkennung von Terephthalsäure durch supramolekulare Selbstorganisation eines Cyclen‐ZnII‐Komplexes mit Acridin‐Seitenarm , 1995 .

[16]  J. Kelly,et al.  Peptidomimetic Host That Binds a Peptide Guest Affording a .beta.-Sheet Structure That Subsequently Self-Assembles. A Simple Receptor Mimic , 1995 .

[17]  J. Sessler,et al.  A Covalently Linked Sapphyrin Dimer. A New Receptor for Dicarboxylate Anions , 1995 .

[18]  A. Hamilton,et al.  Molecular Recognition of Proteins: Sequence-Selective Binding of Aspartate Pairs in Helical Peptides , 1995 .

[19]  L. Gutmann,et al.  Association constants for the binding of vancomycin and teicoplanin to N-acetyl-D-alanyl-D-alanine and N-acetyl-D-alanyl-D-serine. , 1994, The Biochemical journal.

[20]  J. Rudolph,et al.  Highly Efficient Transport of Amino Acids through Liquid Membranes via Three-Component Supramolecules , 1994 .

[21]  Jeffrey S. Moore,et al.  An organic solid with wide channels based on hydrogen bonding between macrocycles , 1994, Nature.

[22]  F. Vögtle,et al.  Isomeric Lactam Catenanes and the Mechanism of their Formation , 1994 .

[23]  F. Vögtle,et al.  Isomere Catenane vom Lactamtyp und ihr Bildungsmechanismus , 1994 .

[24]  G. Singh,et al.  SNAr-Based Macrocyclization: An Application to the Synthesis of Vancomycin Family Models , 1994 .

[25]  W. C. Still,et al.  Synthesis and properties of A4B6 cyclooligomeric receptors , 1994 .

[26]  Poh Bo-Long,et al.  Complexation of amino acids by cyclotetrachromotropylene in aqueous solution - importance of CH-π and π-π interactions , 1994 .

[27]  W. C. Still,et al.  Synthetic receptor binding elucidated with an encoded combinatorial library , 1994 .

[28]  M. Feigel,et al.  A steroidal cyclopeptide, synthesis and shape of the cavity , 1994 .

[29]  F. Diederich,et al.  A New Helicopodand: Molecular Recognition of Dicarboxylic Acids with High Diastereoselectivity , 1993 .

[30]  F. Diederich,et al.  Catalytic Cyclophanes. Part IX. A Thiazolio‐cyclophane as Model for Pyruvate Oxidase and One‐Pot Synthesis of Aromatic Esters by Electrochemical Oxidation of Aldehydes Mediated by Bis(coenzyme) Catalysis , 1993 .

[31]  S. Gellman,et al.  Complexation of hexosammonium ions: evidence for contributions from OH.cntdot..cntdot..cntdot.OH hydrogen bonds in a hydroxylic medium , 1993 .

[32]  J. Rebek,et al.  Multipoint recognition of carboxylates by neutral hosts in non-polar solvents , 1993 .

[33]  David J. Williams,et al.  Isomeric Self‐Assembling [2]Catenanes , 1993 .

[34]  David J. Williams,et al.  DURCH SELBSTASSOZIATION ZU ISOMEREN 2-CATENANEN , 1993 .

[35]  R. Nagarajan Structure-activity relationships of vancomycin-type glycopeptide antibiotics. , 1993, The Journal of antibiotics.

[36]  Y. Aoyama,et al.  Binding of amino acids in water to a highly electron-rich aromatic cavity of pyrogallol or resorcinol cyclic tetramer as π-base , 1993 .

[37]  A. W. Czarnik,et al.  .alpha.-Amino acid chelative complexation by an arylboronic acid , 1993 .

[38]  J. Griffin,et al.  Catalysis of carbamate hydrolysis by vancomycin and semisynthetic derivatives , 1993 .

[39]  J. S. Sawyer,et al.  Synthesis of diaryl ethers, diaryl thioethers, and diarylamines mediated by potassium fluoride-alumina and 18-crown-6 , 1993 .

[40]  H. Ogoshi,et al.  Recognition of α-amino acid esters by zinc porphyrin derivatives via coordination and hydrogen bonding interactions. Evidence for two-point fixation from thermodynamic and induced circular dichroism spectroscopic studies , 1993 .

[41]  A. Albrecht-Gary,et al.  Linear molecular recognition: spectroscopic, photophysical, and complexation studies on .alpha.,.omega.-alkanediyldiammonium ions binding to a bisanthracenyl macrotricyclic receptor , 1993 .

[42]  Tomikazu Sasaki,et al.  Spermine-Induced Conformational Changes of a Synthetic Peptide , 1993 .

[43]  F. Schmidtchen,et al.  Abiotic molecular recognition of dicarboxylic anions in methanol , 1993 .

[44]  W. C. Still,et al.  Practical synthesis of a highly enantioselective receptor for peptides , 1993 .

[45]  W. C. Still,et al.  An exceptional synthetic receptor for peptides , 1993 .

[46]  A. Hamilton,et al.  Molecular recognition: hydrogen-bonding receptors that function in highly competitive solvents , 1993 .

[47]  Dudley H. Williams,et al.  The role of the sugar and chlorine substituents in the dimerization of vancomycin antibiotics , 1993 .

[48]  Andrew D. Hamilton,et al.  Selbstorganisation zu einer Helix durch Wasserstoffbrückenbindungen , 1993 .

[49]  C. Vicent,et al.  A Self‐Assembling, Hydrogen‐Bonded Helix , 1993 .

[50]  M. Hesse,et al.  Ring closure methods in the synthesis of macrocyclic natural products , 1993 .

[51]  David Andreu,et al.  A receptor for the enantioselective recognition of phenylalanine and tryptophan under neutral conditions , 1992 .

[52]  A. Bianchi,et al.  A remarkable shape selectivity in the molecular recognition of carboxylate anions in aqueous solution , 1992 .

[53]  Fritz V gtle Wirt/Gast-Chemie mit Kationen und Anionen , 1992 .

[54]  F. Diederich,et al.  Chiral Molecular Clefts For Dicarboxylic Acid Complexation , 1992 .

[55]  Dudley H. Williams,et al.  Partitioning of free energy contributions in the estimation of binding constants : Residual motions and consequences for amide-amide hydrogen bond strengths , 1992 .

[56]  Enantioselective hosts for neutral derivatives of amino acids , 1992 .

[57]  Hans-Jörg Schneider,et al.  Mechanisms of Molecular Recognition : Investigations of Organic Host–Guest Complexes , 1991 .

[58]  H. Schneider Mechanismen der molekularen Erkennung : Untersuchungen an organischen Wirt-Gast-Komplexen , 1991 .

[59]  Professor Dr. George A. Jeffrey,et al.  Hydrogen Bonding in Biological Structures , 1991, Springer Berlin Heidelberg.

[60]  W. Clark Still,et al.  Highly selective binding of simple peptides by a C3 macrotricyclic receptor , 1991 .

[61]  G. Castronuovo,et al.  Chiral recognition in aqueous solutions at 25 °C. A calorimetric study of the interaction between enantiomeric α-amino acids of different alkyl chain length , 1991 .

[62]  J. F. Stoddart,et al.  CYCLOBIS(PARAQUAT-P-PHENYLENE) : A NOVEL SYNTHETIC RECEPTOR FOR AMINO ACIDS WITH ELECTRON-RICH AROMATIC MOIETIES , 1991 .

[63]  R. Pratt,et al.  Kinetics and mechanism of binding of specific peptides to vancomycin and other glycopeptide antibiotics , 1991 .

[64]  W. C. Still,et al.  Enantioselective complexation of the alanine dipeptide by a C2 host molecule , 1990 .

[65]  A. Hamilton,et al.  Molecular recognition: a remarkably simple receptor for the selective complexation of dicarboxylic acids , 1990 .

[66]  Yasutaka Tanaka,et al.  Molecular recognition. 8. Two-point hydrogen-bonding interaction: a remarkable chain-length selectivity in the binding of dicarboxylic acids with resorcinol-aldehyde cyclotetramer as a multidentate host , 1990 .

[67]  T. Koike,et al.  A study of new bis(macrocyclic polyamine) ligands as inorganic and organic anion receptors , 1990 .

[68]  W. C. Still,et al.  Enantioselective complexation of simple amides by a C2 host molecule , 1989 .

[69]  H. Schneider,et al.  Additivities of Electrostatic and Hydrophobic Interactions in Host–Guest Complexes , 1989 .

[70]  J. Lehn,et al.  Chiral recognition of aromatic carboxylate anions by an optically active abiotic receptor containing a rigid guanidinium binding subunit , 1989 .

[71]  H. Schneider,et al.  Additivitäten von elektrostatischen und hydrophoben Wechselwirkungen in Wirt-Gast-Komplexen , 1989 .

[72]  Dudley H. Williams,et al.  Aspects of molecular recognition: solvent exclusion and dimerization of the antibiotic ristocetin when bound to a model bacterial cell-wall precursor , 1989 .

[73]  F. Schmidtchen A non-macrocyclic host for binding organic phosphates in protic solvents , 1989 .

[74]  David J. Williams,et al.  Cyclobis(paraquat‐p‐phenylene). A Tetracationic Multipurpose Receptor , 1988 .

[75]  David J. Williams,et al.  Cyclobis(paraquat‐p‐phenylen), ein tetrakationischer Mehrzweckrezeptor , 1988 .

[76]  F. Diederich,et al.  Strong enthalpically driven complexation of neutral benzene guests in aqueous solution , 1988 .

[77]  J. Lehn,et al.  Anion-receptor molecules: macrocyclic and macrobicyclic effects on anion binding by polyammonium receptor molecules , 1988 .

[78]  Dudley H. Williams,et al.  Function of the amino sugar and N-terminal amino acid of the antibiotic vancomycin in its complexation with cell wall peptides , 1988 .

[79]  N. Pant,et al.  Carboxylic Acid Complexation by a Synthetic Analogue of the “Carboxylate-Binding Pocket” of Vancomycin , 1988 .

[80]  N. Pant,et al.  Artificial receptors for biologically active molecules , 1988 .

[81]  E. Stevens,et al.  Experimental electron density distribution of naloxone hydrochloride dihydrate, a potent opiate antagonist , 1987 .

[82]  J. Rebek,et al.  Molecular recognition: size and shape specificity in the binding of dicarboxylic acids , 1987 .

[83]  K. Parris,et al.  Convergent functional groups. 4. Recognition and transport of amino acids across a liquid membrane , 1987 .

[84]  Stephen W. Fesik,et al.  Determining the Structure of a Glycopeptide-Acz-Lys-D-Ala-D-Ala Complex Using NMR Parameters and Molecular Modeling. , 1986 .

[85]  Tadashi Mizutani,et al.  Artificial receptors for amino acids in water. Local environmental effect on polar recognition by 6A-amino-6B-carboxy- and 6B-amino-6A-carboxy-.beta.-cyclodextrins , 1986 .

[86]  F. Diederich,et al.  Water-soluble tetraoxa[n.1.n.1]paracyclophanes: Synthesis and host-guest interactions in aqueous solution , 1985 .

[87]  F. Diederich,et al.  Structure of host‐guest complexes of 1′,1″‐dimethyl‐dispiro[1,6,20,25‐tetraoxa[6.1.6.1]paracyclophane‐13,4′:32,4″‐bispiperidine] with benzene and p‐xylene , 1985 .

[88]  F. Vögtle,et al.  Wirt/Gast‐Chemie organischer Oniumverbindungen – Clathrate, kristalline Komplexe und molekulare Einschlußverbindungen in wäßriger Lösung , 1985 .

[89]  J. Rebek,et al.  Molecular recognition: three-point binding leads to a selective receptor for aromatic amino acids , 1985 .

[90]  F. Diederich,et al.  A new water-soluble macrocyclic host of the cyclophane type: host-guest complexation with aromatic guests in aqueous solution and acceleration of the transport of arenes through an aqueous phase , 1984 .

[91]  F. Diederich,et al.  Proton NMR investigations of host-guest complexation between a macrocyclic host of the cyclophane type and aromatic guests in aqueous solution , 1984 .

[92]  R. Wiechert,et al.  A Novel Entry to 17α-Bromo- and 17α-Iodoethynyl Steroids , 1984 .

[93]  J. Lehn,et al.  Molecular Recognition in Anion Coordination Chemistry. Structure, Binding Constants and Receptor‐Substrate Complementarity of a Series of Anion Cryptates of a Macrobicyclic Receptor Molecule , 1984 .

[94]  D. Williams,et al.  The structure and mode of action of glycopeptide antibiotics of the vancomycin group. , 1984, Annual review of microbiology.

[95]  Dudley H. Williams,et al.  Detailed binding sites of the antibiotics vancomycin and ristocetin A: determination of intermolecular distances in antibiotic/substrate complexes by use of the time-dependent NOE , 1983 .

[96]  J. L. Kurz,et al.  An inverse reactivity-selectivity relationship. Kinetic nitrogen isotope effects on methyl transfer to pyridines , 1982 .

[97]  M. Kodama,et al.  A carbonate receptor model by macromonocyclic polyamines and its physiological implications , 1982 .

[98]  T. Araki,et al.  Carrier-mediated transport of amino acid and simple organic anions by lipophilic metal complexes , 1982 .

[99]  H. Brown,et al.  Selective reductions. 29. A simple technique to achieve an enhanced rate of reduction of representative organic compounds by borane-dimethyl sulfide , 1982 .

[100]  M. Kodama,et al.  Macromonocyclic polyamines as biological polyanion complexons. 2. Ion-pair association with phosphate and nucleotides , 1982 .

[101]  J. Lehn,et al.  Anion receptor molecules. Chain length dependent selective binding of organic and biological dicarboxylate anions by ditopic polyammonium macrocycles , 1982 .

[102]  M. Kodama,et al.  Macromonocyclic polyamines as specific receptors for tricarboxylate-cycle anions , 1981 .

[103]  R. Rajagopalan,et al.  Selective functionalization of doubly coordinated flexible chains , 1981 .

[104]  R. Sessions,et al.  Anion receptor molecules. Synthesis and anion-binding properties of polyammonium macrocycles , 1981 .

[105]  Franz P. Schmidtchen Macrocyclische quartäre Ammoniumsalze, II1) Einschlußkomplexbildung mit Anionen in Lösung , 1981 .

[106]  F. Schmidtchen Synthese makrotricyclischer Amine , 1980 .

[107]  Dudley H. Williams,et al.  An NMR study of the interaction between the antibiotic ristocetin A and a cell wall peptide analog. Negative nuclear Overhauser effects in the investigation of drug binding sites , 1980 .

[108]  J. Lehn,et al.  Anion Coordination Chemistry: Polyguanidinium Salts as Anion Complexones† , 1979 .

[109]  T. Mukaiyama Neue Synthesen mit Oniumsalzen von Aza‐arenen , 1979 .

[110]  T. Mukaiyama New Synthetic Reactions Based on the Onium Salts of Aza‐Arenes [New synthetic methods (29)] , 1979 .

[111]  J. Lehn,et al.  Molecular recognition. Anion cryptates of a macrobicyclic receptor molecule for linear triatomic species , 1978 .

[112]  Olga Kennard,et al.  Structure of vancomycin and its complex with acetyl-D-alanyl-D-alanine , 1978, Nature.

[113]  F. Schmidtchen Inclusion of Anions in Macrotricyclic Quaternary Ammonium Salts , 1977 .

[114]  Franz P. Schmidtchen Einschlu von Anionen in makrotricyclische quartre Ammoniumsalze , 1977 .

[115]  R. Howells,et al.  Trifluoromethanesulfonic acid and derivatives , 1977 .

[116]  D. D. Perrin,et al.  Buffers for pH and metal ion control , 1974 .

[117]  K. Ninomiya,et al.  Diphenylphosphoryl azide. A new convenient reagent for a modified Curtus reaction and for the peptide synthesis. , 1972, Journal of the American Chemical Society.

[118]  R. Borch,et al.  New method for the methylation of amines , 1972 .

[119]  H. Perkins Specificity of combination between mucopeptide precursors and vancomycin or ristocetin. , 1969, The Biochemical journal.

[120]  D. D. Perrin,et al.  Purification of laboratory chemicals , 1966 .

[121]  W. Burrows,et al.  Cyclization in the Course of Clarke—Eschweiler Methylation1 , 1965 .

[122]  K. Miescher,et al.  Über die stufenweise Quaternisierung von aliphatischen Polyaminen. Neue Verbindungen mit ganglienblockierender Wirkung , 1951 .