Approximation by neural networks is not continuous
暂无分享,去创建一个
[1] R. Hecht-Nielsen. ON THE ALGEBRAIC STRUCTURE OF FEEDFORWARD NETWORK WEIGHT SPACES , 1990 .
[2] Victor Klee,et al. Convexity of Chebyshev sets , 1961 .
[3] Leonid Gurvits,et al. Approximation and Learning of Convex Superpositions , 1995, J. Comput. Syst. Sci..
[4] Roman Neruda,et al. Uniqueness of Functional Representations by Gaussian Basis Function Networks , 1994 .
[5] Vera Kurková,et al. Approximation of functions by perceptron networks with bounded number of hidden units , 1995, Neural Networks.
[6] Vladik Kreinovich,et al. Uniqueness of network parametrization and faster learning , 1994, Neural Parallel Sci. Comput..
[7] J. Rice. The approximation of functions , 1964 .
[8] D. Braess. Nonlinear Approximation Theory , 1986 .
[9] I. Singer. Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces , 1970 .
[10] A. Friedman. Foundations of modern analysis , 1970 .
[11] R. DeVore,et al. Optimal nonlinear approximation , 1989 .
[12] L. P. Vlasov. Almost convex and Chebyshev sets , 1970 .
[13] G. Lorentz. Approximation of Functions , 1966 .
[14] A. Kolmogoroff,et al. Uber Die Beste Annaherung Von Funktionen Einer Gegebenen Funktionenklasse , 1936 .
[15] L. P. Vlasov. APPROXIMATIVE PROPERTIES OF SETS IN NORMED LINEAR SPACES , 1973 .
[16] Wu Li,et al. Continuities of Metric Projection and GeometricConsequences , 1997 .
[17] Héctor J. Sussmann,et al. Uniqueness of the weights for minimal feedforward nets with a given input-output map , 1992, Neural Networks.
[18] P. C. Kainen,et al. Singularities of finite scaling functions , 1996 .
[19] A. Pinkus. n-Widths in Approximation Theory , 1985 .
[20] Lucas N. H. Bunt. Bijdrage tot de theorie der convexe puntverzamelingen , 1934 .
[21] H. Mhaskar,et al. Neural networks for localized approximation , 1994 .