Approximation by neural networks is not continuous

Abstract It is shown that in a Banach space X satisfying mild conditions, for its infinite, linearly independent subset G, there is no continuous best approximation map from X to the n-span, span n G . The hypotheses are satisfied when X is an L p -space, 1 span n G is not a subspace of X, it is also shown that there is no continuous map from X to span n G within any positive constant of a best approximation.

[1]  R. Hecht-Nielsen ON THE ALGEBRAIC STRUCTURE OF FEEDFORWARD NETWORK WEIGHT SPACES , 1990 .

[2]  Victor Klee,et al.  Convexity of Chebyshev sets , 1961 .

[3]  Leonid Gurvits,et al.  Approximation and Learning of Convex Superpositions , 1995, J. Comput. Syst. Sci..

[4]  Roman Neruda,et al.  Uniqueness of Functional Representations by Gaussian Basis Function Networks , 1994 .

[5]  Vera Kurková,et al.  Approximation of functions by perceptron networks with bounded number of hidden units , 1995, Neural Networks.

[6]  Vladik Kreinovich,et al.  Uniqueness of network parametrization and faster learning , 1994, Neural Parallel Sci. Comput..

[7]  J. Rice The approximation of functions , 1964 .

[8]  D. Braess Nonlinear Approximation Theory , 1986 .

[9]  I. Singer Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces , 1970 .

[10]  A. Friedman Foundations of modern analysis , 1970 .

[11]  R. DeVore,et al.  Optimal nonlinear approximation , 1989 .

[12]  L. P. Vlasov Almost convex and Chebyshev sets , 1970 .

[13]  G. Lorentz Approximation of Functions , 1966 .

[14]  A. Kolmogoroff,et al.  Uber Die Beste Annaherung Von Funktionen Einer Gegebenen Funktionenklasse , 1936 .

[15]  L. P. Vlasov APPROXIMATIVE PROPERTIES OF SETS IN NORMED LINEAR SPACES , 1973 .

[16]  Wu Li,et al.  Continuities of Metric Projection and GeometricConsequences , 1997 .

[17]  Héctor J. Sussmann,et al.  Uniqueness of the weights for minimal feedforward nets with a given input-output map , 1992, Neural Networks.

[18]  P. C. Kainen,et al.  Singularities of finite scaling functions , 1996 .

[19]  A. Pinkus n-Widths in Approximation Theory , 1985 .

[20]  Lucas N. H. Bunt Bijdrage tot de theorie der convexe puntverzamelingen , 1934 .

[21]  H. Mhaskar,et al.  Neural networks for localized approximation , 1994 .