On-line bin packing — A restricted survey

In the classical bin packing problem, one is asked to pack items of various sizes into the minimum number of equal-sized bins. In the on-line version of this problem, the packer is given the items one by one and must immediately and irrevocably assign every item to its bin, without knowing the future items. Beginning with the first results in the early 1970's, we survey — from the worst case point of view — the approximation results obtained for on-line bin packing, higher dimensional versions of the problem, lower bounds on worst case ratios and related results.

[1]  János Csirik,et al.  On the worst-case performance of the NkF bin-packing heuristic , 1989, Acta Cybern..

[2]  D. K. Friesen,et al.  Variable Sized Bin Packing , 1986, SIAM J. Comput..

[3]  Prabhakar Raghavan,et al.  Multidimensional on-line bin packing: Algorithms and worst-case analysis , 1989 .

[4]  Gerhard J. Woeginger,et al.  A Lower Bound for On-Line Vector-Packing Algorithms , 1993, Acta Cybern..

[5]  Ronald L. Rivest,et al.  Orthogonal Packings in Two Dimensions , 1980, SIAM J. Comput..

[6]  G Galambos Parametric lower bound for on-line bin-packing , 1986 .

[7]  David S. Johnson,et al.  Approximation Algorithms for Bin-Packing — An Updated Survey , 1984 .

[8]  Herb Schwetman,et al.  Analysis of Several Task-Scheduling Algorithms for a Model of Multiprogramming Computer Systems , 1975, JACM.

[9]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[10]  Barun Chandra Does Randomization Help in On-Line Bin Packing? , 1992, Inf. Process. Lett..

[11]  Robert E. Tarjan,et al.  Amortized efficiency of list update and paging rules , 1985, CACM.

[12]  Brenda S. Baker,et al.  Shelf Algorithms for Two-Dimensional Packing Problems , 1983, SIAM J. Comput..

[13]  Bintong Chen,et al.  An Improved Lower Bound for the Bin Packing Problem , 1996, Discret. Appl. Math..

[14]  Micha Hofri,et al.  Probabilistic Analysis of Algorithms , 1987, Texts and Monographs in Computer Science.

[15]  Andrew Chi-Chih Yao,et al.  Resource Constrained Scheduling as Generalized Bin Packing , 1976, J. Comb. Theory A.

[16]  D. T. Lee,et al.  A simple on-line bin-packing algorithm , 1985, JACM.

[17]  D. T. Lee,et al.  On-Line Bin Packing in Linear Time , 1989, J. Algorithms.

[18]  D. S. Johnson,et al.  On Packing Two-Dimensional Bins , 1982 .

[19]  János Csirik,et al.  Online algorithms for a dual version of bin packing , 1988, Discret. Appl. Math..

[20]  Solomon W. Golomb,et al.  On Certain Nonlinear Recurring Sequences , 1963 .

[21]  André van Vliet On the Asymptotic Worst Case Behavior of Harmonic Fit , 1996, J. Algorithms.

[22]  H. E. Salzer,et al.  The Approximation of Numbers as Sums of Reciprocals , 1947 .

[23]  George Markowsky,et al.  Multidimensional Bin Packing Algorithms , 1977, IBM J. Res. Dev..

[24]  Frank M. Liang A Lower Bound for On-Line Bin Packing , 1980, Inf. Process. Lett..

[25]  Ronald L. Graham,et al.  Bounds on Multiprocessing Timing Anomalies , 1969, SIAM Journal of Applied Mathematics.

[26]  Joseph Y.-T. Leung,et al.  On a Dual Version of the One-Dimensional Bin Packing Problem , 1984, J. Algorithms.

[27]  André van Vliet,et al.  An Improved Lower Bound for On-Line Bin Packing Algorithms , 1992, Inf. Process. Lett..

[28]  Andrew Chi-Chih Yao,et al.  New Algorithms for Bin Packing , 1978, JACM.

[29]  Gábor Galambos A 1.6 Lower-Bound for the Two-Dimensional On-Line Rectangle Bin-Packing , 1991, Acta Cybern..

[30]  János Csirik,et al.  An on-line algorithm for multidimensional bin packing , 1993, Oper. Res. Lett..

[31]  Brenda S. Baker,et al.  A 5/4 Algorithm for Two-Dimensional Packing , 1981, J. Algorithms.

[32]  Donna J. Brown,et al.  A Lower Bound for On-Line One-Dimensional Bin Packing Algorithms. , 1979 .

[33]  Michael A. Langston,et al.  Online variable-sized bin packing , 1989, Discret. Appl. Math..

[34]  Michael B. Richey,et al.  Improved bounds for harmonic-based bin packing algorithms , 1991, Discret. Appl. Math..

[35]  David C. Fisher Next-fit packs a list and its reverse into the same number of bins , 1988 .

[36]  David S. Johnson,et al.  Fast Algorithms for Bin Packing , 1974, J. Comput. Syst. Sci..

[37]  Gerhard J. Woeginger Improved Space for Bounded-Space, On-Line Bin-Packing , 1993, SIAM J. Discret. Math..

[38]  Daniel Dominic Sleator,et al.  A 2.5 Times Optimal Algorithm for Packing in Two Dimensions , 1980, Inf. Process. Lett..

[39]  David S. Johnson,et al.  Bounded Space On-Line Bin Packing: Best Is Better than First , 1991, SODA '91.

[40]  J. B. G. Frenk,et al.  A Simple Proof of Liang's Lower Bound for On-Line bin Packing and the Extension to the Parametric Case , 1993, Discret. Appl. Math..

[41]  Jeffrey D. Ullman,et al.  Worst-Case Performance Bounds for Simple One-Dimensional Packing Algorithms , 1974, SIAM J. Comput..

[42]  G. S. Lueker,et al.  Asymptotic Methods in the Probabilistic Analysis of Sequencing and Packing Heuristics , 1988 .

[43]  Weizhen Mao,et al.  Tight Worst-Case Performance Bounds for Next-k-Fit Bin Packing , 1993, SIAM J. Comput..

[44]  Ronald L. Graham,et al.  Bounds for Multiprocessor Scheduling with Resource Constraints , 1975, SIAM J. Comput..