Lie algebraic approaches to classical partition identities
暂无分享,去创建一个
[1] John Zolnowsky,et al. A direct combinatorial proof of the Jacobi identity , 1974, Discret. Math..
[2] V. Kats. Infinite-dimensioned Lie algebras and Dedekind'sη-function , 1974 .
[3] M. Cheema,et al. Vector partitions and combinatorial identities , 1964 .
[4] J. Lepowsky,et al. Construction of the affine Lie algebraA1(1) , 1978 .
[5] W. G. Connor. Partition theorems related to some identities of Rogers and Watson , 1975 .
[6] Macdonald identities and Euclidean Lie algebras , 1975 .
[7] J. Lepowsky,et al. Generalized Verma modules, loop space cohomology and MacDonald-type identities , 1979 .
[8] J. Lepowsky,et al. The Weyl-Kac character formula and power series identities , 1978 .
[9] Macdonald-type identities , 1978 .
[10] V. Kac. SIMPLE IRREDUCIBLE GRADED LIE ALGEBRAS OF FINITE GROWTH , 1968 .
[11] J. Lepowsky,et al. Lie algebra homology and the Macdonald-Kac formulas , 1976 .
[12] L. Carlitz,et al. A simple proof of the quintuple product identity , 1972 .
[13] R. Moody. A new class of Lie algebras , 1968 .
[14] G. Andrews. The Theory of Partitions: Frontmatter , 1976 .
[15] Lucy Joan Slater,et al. Further Identities of the Rogers‐Ramanujan Type , 1952 .
[16] J. Humphreys. Introduction to Lie Algebras and Representation Theory , 1973 .
[17] George E. Andrews,et al. A general theory of identities of the Rogers-Ramanujan type , 1974 .
[18] David M. Bressoud,et al. A Generalization of the Rogers-Ramanujan Identities for all Moduli , 1979, J. Comb. Theory, Ser. A.
[19] I. G. MacDonald,et al. Affine root systems and Dedekind'sη-function , 1971 .