Lie algebraic approaches to classical partition identities

[1]  John Zolnowsky,et al.  A direct combinatorial proof of the Jacobi identity , 1974, Discret. Math..

[2]  V. Kats Infinite-dimensioned Lie algebras and Dedekind'sη-function , 1974 .

[3]  M. Cheema,et al.  Vector partitions and combinatorial identities , 1964 .

[4]  J. Lepowsky,et al.  Construction of the affine Lie algebraA1(1) , 1978 .

[5]  W. G. Connor Partition theorems related to some identities of Rogers and Watson , 1975 .

[6]  Macdonald identities and Euclidean Lie algebras , 1975 .

[7]  J. Lepowsky,et al.  Generalized Verma modules, loop space cohomology and MacDonald-type identities , 1979 .

[8]  J. Lepowsky,et al.  The Weyl-Kac character formula and power series identities , 1978 .

[9]  Macdonald-type identities , 1978 .

[10]  V. Kac SIMPLE IRREDUCIBLE GRADED LIE ALGEBRAS OF FINITE GROWTH , 1968 .

[11]  J. Lepowsky,et al.  Lie algebra homology and the Macdonald-Kac formulas , 1976 .

[12]  L. Carlitz,et al.  A simple proof of the quintuple product identity , 1972 .

[13]  R. Moody A new class of Lie algebras , 1968 .

[14]  G. Andrews The Theory of Partitions: Frontmatter , 1976 .

[15]  Lucy Joan Slater,et al.  Further Identities of the Rogers‐Ramanujan Type , 1952 .

[16]  J. Humphreys Introduction to Lie Algebras and Representation Theory , 1973 .

[17]  George E. Andrews,et al.  A general theory of identities of the Rogers-Ramanujan type , 1974 .

[18]  David M. Bressoud,et al.  A Generalization of the Rogers-Ramanujan Identities for all Moduli , 1979, J. Comb. Theory, Ser. A.

[19]  I. G. MacDonald,et al.  Affine root systems and Dedekind'sη-function , 1971 .