Hybrid Semiparametric Modeling: A Modular Process Systems Engineering Approach for the Integration of Available Knowledge Sources

[1]  Behrooz Mirza,et al.  Modeling and optimization of cross-flow ultrafiltration using hybrid neural network-genetic algorithm approach , 2014 .

[2]  J. Siepmann,et al.  PLGA-based microparticles: elucidation of mechanisms and a new, simple mathematical model quantifying drug release. , 2002, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[3]  Mohd Azlan Hussain,et al.  A practical hybrid modelling approach for the prediction of potential fouling parameters in ultrafiltration membrane water treatment plant , 2017 .

[4]  G. Grassi,et al.  Mathematical modeling of simultaneous drug release and in vivo absorption. , 2011, International journal of pharmaceutics.

[5]  David R. Anderson,et al.  Multimodel Inference , 2004 .

[6]  Mark J. Willis,et al.  Dynamic hybrid model for ultrafiltration membrane processes , 2017 .

[7]  N. Peppas,et al.  Modeling of drug release from swellable polymers. , 2000, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[8]  Hybrid Models and Experimental Design , 2018 .

[9]  Julian Morris,et al.  Identification of semi-parametric hybrid process models , 2011, Comput. Chem. Eng..

[10]  Sebastião Feyo de Azevedo,et al.  Hybrid semi-parametric modeling in process systems engineering: Past, present and future , 2014, Comput. Chem. Eng..

[11]  R. Langer,et al.  A theoretical model of erosion and macromolecular drug release from biodegrading microspheres. , 1997, Journal of pharmaceutical sciences.

[12]  H. Kawakami,et al.  Preparation and properties of PLGA microspheres containing hydrophilic drugs by the SPG (shirasu porous glass) membrane emulsification technique. , 2008, Colloids and surfaces. B, Biointerfaces.

[13]  O. Corrigan,et al.  Quantifying drug release from PLGA nanoparticulates. , 2009, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[14]  J. Siepmann,et al.  Mathematical modeling of drug delivery. , 2008, International journal of pharmaceutics.

[15]  Wolfgang Marquardt,et al.  The validity domain of hybrid models and its application in process optimization , 2007 .

[16]  Yun Zhang,et al.  Design of ensemble neural network using the Akaike information criterion , 2008, Eng. Appl. Artif. Intell..

[17]  Juergen Siepmann,et al.  A New Mathematical Model Quantifying Drug Release from Bioerodible Microparticles Using Monte Carlo Simulations , 2002, Pharmaceutical Research.

[18]  V. Préat,et al.  PLGA-based nanoparticles: an overview of biomedical applications. , 2012, Journal of controlled release : official journal of the Controlled Release Society.

[19]  Hossam M. Zawbaa,et al.  Computational Intelligence Modeling of the Macromolecules Release from PLGA Microspheres—Focus on Feature Selection , 2016, PloS one.

[20]  Sung-Hee Roh,et al.  Ciprofloxacin-encapsulated poly(DL-lactide-co-glycolide) nanoparticles and its antibacterial activity. , 2008, International journal of pharmaceutics.

[21]  R. Grau,et al.  A generalized integral method for solving the design equations of dissolution/diffusion-controlled drug release from planar, cylindrical and spherical matrix devices , 2007 .

[22]  O. Corrigan,et al.  Mechanistic aspects of the release of levamisole hydrochloride from biodegradable polymers. , 2000, Journal of controlled release : official journal of the Controlled Release Society.

[23]  A. Göpferich,et al.  Mechanisms of polymer degradation and erosion. , 1996, Biomaterials.

[24]  Rui Oliveira,et al.  Modeling of the burst release from PLGA micro- and nanoparticles as function of physicochemical parameters and formulation characteristics. , 2017, International journal of pharmaceutics.

[25]  Salvador García-Muñoz,et al.  Definition of Design Spaces Using Mechanistic Models and Geometric Projections of Probability Maps , 2015 .

[26]  Wolfgang Marquardt,et al.  Incremental identification of hybrid process models , 2008, Comput. Chem. Eng..

[27]  Mark J. Willis,et al.  Simultaneous parameter identification and discrimination of the nonparametric structure of hybrid semi-parametric models , 2017, Comput. Chem. Eng..

[28]  X Huang,et al.  On the importance and mechanisms of burst release in matrix-controlled drug delivery systems. , 2001, Journal of controlled release : official journal of the Controlled Release Society.

[29]  Richard D Braatz,et al.  Mathematical modeling of drug delivery from autocatalytically degradable PLGA microspheres--a review. , 2012, Journal of controlled release : official journal of the Controlled Release Society.

[30]  María-Cinta Vincent-Vela,et al.  Comparison between artificial neural networks and Hermia’s models to assess ultrafiltration performance , 2016 .

[31]  Mario Grassi,et al.  Mathematical modelling and controlled drug delivery: matrix systems. , 2005, Current drug delivery.

[32]  Rui Oliveira,et al.  Bioprocess Iterative Batch‐to‐Batch Optimization Based on Hybrid Parametric/Nonparametric Models , 2006, Biotechnology progress.

[33]  N. Comolli,et al.  An integrated experimental and modeling approach to propose biotinylated PLGA microparticles as versatile targeting vehicles for drug delivery , 2013, Progress in Biomaterials.

[34]  J. Xu,et al.  Effect of WOW process parameters on morphology and burst release of FITC-dextran loaded PLGA microspheres. , 2007, International journal of pharmaceutics.

[35]  Moritz Stosch,et al.  Intensified design of experiments for upstream bioreactors , 2017, Engineering in life sciences.

[36]  R. Sinisterra,et al.  PLGA nanofibers improves the antitumoral effect of daunorubicin. , 2015, Colloids and surfaces. B, Biointerfaces.

[37]  I. Bala,et al.  Sustained release nanoparticulate formulation containing antioxidant-ellagic acid as potential prophylaxis system for oral administration , 2006, Journal of drug targeting.

[38]  Lyle H. Ungar,et al.  A hybrid neural network‐first principles approach to process modeling , 1992 .

[39]  Nikolaos A. Peppas,et al.  Mechanisms of solute and drug transport in relaxing, swellable, hydrophilic glassy polymers , 1999 .

[40]  F Langenbucher,et al.  Letters to the Editor: Linearization of dissolution rate curves by the Weibull distribution , 1972, The Journal of pharmacy and pharmacology.

[41]  F Moussy,et al.  Dexamethasone/PLGA microspheres for continuous delivery of an anti-inflammatory drug for implantable medical devices. , 2002, Biomaterials.

[42]  S. Reinikainen,et al.  Estimation of drug release profiles of a heterogeneous set of drugs from a hydrophobic matrix tablet using molecular descriptors , 2008 .

[43]  J. Siepmann,et al.  Mathematical modeling of bioerodible, polymeric drug delivery systems. , 2001, Advanced drug delivery reviews.

[44]  Jakub Szlęk,et al.  Heuristic modeling of macromolecule release from PLGA microspheres , 2013, International journal of nanomedicine.

[45]  Tae Gwan Park,et al.  Pegylated recombinant human epidermal growth factor (rhEGF) for sustained release from biodegradable PLGA microspheres. , 2002, Biomaterials.

[46]  P Neubauer,et al.  Online optimal experimental re‐design in robotic parallel fed‐batch cultivation facilities , 2016, Biotechnology and bioengineering.

[47]  H. Ohshima,et al.  Pulsatile drug release from poly (lactide-co-glycolide) microspheres: how does the composition of the polymer matrices affect the time interval between the initial burst and the pulsatile release of drugs? , 2000 .

[48]  A. Kim,et al.  Prediction of permeate flux decline in crossflow membrane filtration of colloidal suspension: a radial basis function neural network approach , 2006 .

[49]  F. Boey,et al.  Study of the initial stages of drug release from a degradable matrix of poly(d,l-lactide-co-glycolide). , 2004, Biomaterials.

[50]  C. Brepols,et al.  Modelling of a membrane bioreactor system for municipal wastewater treatment , 2003 .

[51]  G. B. Sahoo,et al.  Predicting flux decline in crossflow membranes using artificial neural networks and genetic algorithms , 2006 .

[52]  Rui Oliveira,et al.  Hybrid Model Structures for Knowledge Integration , 2018 .

[53]  F. Atyabi,et al.  Preparation and characterization of estradiol-loaded PLGA nanoparticles using homogenization-solvent diffusion method , 2008 .

[54]  S. Geer,et al.  Statistics for big data: A perspective , 2018 .

[55]  A. Lamprecht,et al.  Effect of the microencapsulation of nanoparticles on the reduction of burst release. , 2007, International journal of pharmaceutics.

[56]  Rui Oliveira,et al.  Hybrid semiparametric systems for quantitative sequence-activity modeling of synthetic biological parts , 2018, Synthetic biology.

[57]  Yoshiaki,et al.  Preparations of biodegradable nanospheres of water-soluble and insoluble drugs with D, L-lactide/glycolide copolymer by a novel spontaneous emulsification solvent diffusion method, and the drug release behavior. , 1993 .

[58]  M. Barolo,et al.  Linking Models and Experiments , 2016 .

[59]  J. Czernuszka,et al.  Preparation and characterization of negatively charged poly(lactic-co-glycolic acid) microspheres. , 2009, Journal of pharmaceutical sciences.

[60]  Y Li,et al.  PEGylated PLGA nanoparticles as protein carriers: synthesis, preparation and biodistribution in rats. , 2001, Journal of controlled release : official journal of the Controlled Release Society.

[61]  Oscar Andrés Prado-Rubio,et al.  Towards Sustainable Flux Determination for Dynamic Ultrafiltration through Multivariable System Identification , 2017 .

[62]  J. Siepmann,et al.  PLGA-based drug delivery systems: importance of the type of drug and device geometry. , 2008, International journal of pharmaceutics.