Conventional vs harmonic-structured β-Ti-25Nb-25Zr alloys: A comparative study of deformation mechanisms

[1]  Ti-Based Biomaterials , 2020 .

[2]  Bin Chen,et al.  Transitional structure of {332}〈113〉β twin boundary in a deformed metastable β-type Ti-Nb-based alloy, revealed by atomic resolution electron microscopy , 2018, Scripta Materialia.

[3]  D. Raabe,et al.  The Laplace project: an integrated suite for correlative atom probe tomography and electron microscopy under cryogenic and UHV conditions , 2018, 1805.10836.

[4]  Yu Yang,et al.  Stress release-induced interfacial twin boundary ω phase formation in a β type Ti-based single crystal displaying stress-induced α” martensitic transformation , 2018 .

[5]  M. Herbig,et al.  Characterizing solute hydrogen and hydrides in pure and alloyed titanium at the atomic scale , 2018, 1803.04007.

[6]  P. Langlois,et al.  Data on processing of Ti-25Nb-25Zr β-titanium alloys via powder metallurgy route: Methodology, microstructure and mechanical properties , 2018, Data in brief.

[7]  H. Hosoda,et al.  Plastic deformation behaviour of single-crystalline martensite of Ti-Nb shape memory alloy , 2017, Scientific Reports.

[8]  K. Ameyama,et al.  Dynamic Hall-Petch versus grain-size gradient effects on the mechanical behavior under simple shear loading of β-titanium Ti-25Nb-25Zr alloys , 2017 .

[9]  K. Vecchio,et al.  Phase stability dependence of deformation mode correlated mechanical properties and elastic properties in Ti-Nb gum metal , 2017 .

[10]  Ting Zhu,et al.  Towards strength–ductility synergy through the design of heterogeneous nanostructures in metals , 2017 .

[11]  Haoliang Wang,et al.  In situ scanning and transmission electron microscopy investigation on plastic deformation in a metastable β titanium alloy , 2017 .

[12]  F. Sun,et al.  Microstructural evolution of a ductile metastable β titanium alloy with combined TRIP/TWIP effects , 2017 .

[13]  Y. Yang,et al.  Reversion of a Parent {130}⟨310⟩_{α^{''}} Martensitic Twinning System at the Origin of {332}⟨113⟩_{β} Twins Observed in Metastable β Titanium Alloys. , 2016, Physical review letters.

[14]  William A. Curtin,et al.  Theory of strengthening in fcc high entropy alloys , 2016 .

[15]  K. Ameyama,et al.  Three-Dimensionally Gradient and Periodic Harmonic Structure for High Performance Advanced Structural Materials , 2016 .

[16]  Zhe Zhang,et al.  Three-dimensionally gradient harmonic structure design: an integrated approach for high performance structural materials , 2016 .

[17]  C. Tasan,et al.  On the mechanism of {332} twinning in metastable β titanium alloys , 2016 .

[18]  H. Sehitoglu,et al.  Slip Resistance of Ti-Based High-Temperature Shape Memory Alloys , 2016, Shape Memory and Superelasticity.

[19]  K. Lu,et al.  Plastic accommodation at homophase interfaces between nanotwinned and recrystallized grains in an austenitic duplex-microstructured steel , 2016, Science and technology of advanced materials.

[20]  I. Guillot,et al.  Microstructural investigation of plastically deformed Ti20Zr20Hf20Nb20Ta20 high entropy alloy by X-ray diffraction and transmission electron microscopy , 2015 .

[21]  I. Guillot,et al.  On the room temperature deformation mechanisms of a TiZrHfNbTa refractory high-entropy alloy , 2015 .

[22]  Q. Zeng,et al.  Effects of carbon vacancies on the structures, mechanical properties, and chemical bonding of zirconium carbides: a first-principles study. , 2015, Physical chemistry chemical physics : PCCP.

[23]  D. Wexler,et al.  The influence of β phase stability on deformation mode and compressive mechanical properties of Ti–10V–3Fe–3Al alloy , 2015 .

[24]  E. Rauch,et al.  Automated crystal orientation and phase mapping in TEM , 2014 .

[25]  G. Dirras,et al.  Powder metallurgy processing and deformation characteristics of bulk multimodal nickel , 2014 .

[26]  Fuping Yuan,et al.  Extraordinary strain hardening by gradient structure , 2014, Proceedings of the National Academy of Sciences.

[27]  G. Dirras,et al.  Characterization of bulk bimodal polycrystalline nickel deformed by direct impact loadings , 2014 .

[28]  K. Ray,et al.  An FCC phase in a metastable β-titanium alloy , 2014 .

[29]  F. Prima,et al.  Investigation of early stage deformation mechanisms in a metastable β titanium alloy showing combined twinning-induced plasticity and transformation-induced plasticity effects , 2013 .

[30]  D. Caillard A TEM in situ study of alloying effects in iron. II—Solid solution hardening caused by high concentrations of Si and Cr , 2013 .

[31]  S. Semboshi,et al.  Mechanical properties and microstructures of β Ti-25Nb-11Sn ternary alloy for biomedical applications. , 2013, Materials science & engineering. C, Materials for biological applications.

[32]  A. Couret,et al.  Extrinsic obstacles and loop formation in deformed metals and alloys , 2013 .

[33]  F. Prima,et al.  On the design of new β-metastable titanium alloys with improved work hardening rate thanks to simultaneous TRIP and TWIP effects , 2012 .

[34]  P. Castany,et al.  In situ TEM study of dislocation slip in a metastable β titanium alloy , 2012 .

[35]  P. Castany,et al.  Dislocation mobility in gum metal β-titanium alloy studied via in situ transmission electron microscopy , 2011 .

[36]  N. Tao,et al.  Revealing Extraordinary Intrinsic Tensile Plasticity in Gradient Nano-Grained Copper , 2011, Science.

[37]  I. Jones,et al.  In situ hydride formation in titanium during focused ion milling. , 2011, Journal of electron microscopy.

[38]  A. Singh,et al.  Ti based biomaterials, the ultimate choice for orthopaedic implants – A review , 2009 .

[39]  M. Morinaga,et al.  Phase stability change with Zr content in β-type Ti–Nb alloys , 2007 .

[40]  Ju Il Kim,et al.  Composition dependent crystallography of α″-martensite in Ti–Nb-based β-titanium alloy , 2007 .

[41]  D Lawrence,et al.  In situ site-specific specimen preparation for atom probe tomography. , 2007, Ultramicroscopy.

[42]  I. Manna,et al.  Polymorphic phase transformation in Ti50Zr50 binary alloy by mechanical alloying , 2006 .

[43]  F. Banhart,et al.  Formation of face-centered-cubic titanium by mechanical attrition , 2003 .

[44]  G. Caër,et al.  Room-Temperature Mechanosynthesis of Carbides by Grinding of Elemental Powders , 1991 .

[45]  P. Veyssiére,et al.  Dislocation line stability in Ni3AI , 1986 .

[46]  O. Izumi,et al.  Transmission electron microscopic observations of mechanical twinning in metastable beta titanium alloys , 1986 .

[47]  M. Meshii,et al.  Solid solution softening and solid solution hardening , 1973 .

[48]  E. Furubayashi Behavior of Dislocations in Fe-3% Si under Stress , 1969 .

[49]  E. W. Hammer Symposium on internal stresses in metals and alloys: organized by The Institute of Metals. 485 pages, 14 × 22 cm., drawings, illustrations and tables. London, The Institute of Metals, 1948. Price, 42s , 1949 .

[50]  I. Guillot,et al.  Study of a bcc multi-principal element alloy: Tensile and simple shear properties and underlying deformation mechanisms , 2018 .

[51]  F. Prima,et al.  A new titanium alloy with a combination of high strength, high strain hardening and improved ductility , 2015 .

[52]  U. Cnrs A new titanium alloy with a combination of high strength,high strain hardening and improved ductility , 2015 .

[53]  K. Ameyama,et al.  New Microstructure Design for Commercially Pure Titanium with Outstanding Mechanical Properties by Mechanical Milling and Hot Roll Sintering , 2010 .

[54]  Y. Takemoto,et al.  Martensitic {332}〈113〉 twin in β type Ti-Mo alloy , 1996 .

[55]  T. Furuhara,et al.  Transmission Electron Microscopy of {332}〈113〉 Deformation Twin in Ti–15V–3Cr–3Sn–3Al Alloy , 1994 .

[56]  C. G. Shelton,et al.  A resolution of the interface phase problem in titanium alloys , 1988 .

[57]  J. E. Dorn,et al.  Rate processes in plastic deformation of materials : proceedings from the John E. Dorn Symposium , 1975 .

[58]  Jens Lothe John Price Hirth,et al.  Theory of Dislocations , 1968 .