High-Efficiency Crystalline Silicon Solar Cells

The current cost distribution of a crystalline silicon PV module is clearly dominated by material costs, especially by the costs of the silicon wafer. Therefore cell designs that allow the use of thinner wafers and the increase of energy conversion efficiency are of special interest to the PV industry. This article gives an overview of the most critical issues to achieve this aim and of the recent activities at Fraunhofer ISE and other institutes.

[1]  R. Hezel,et al.  Investigation of carrier lifetime instabilities in Cz-grown silicon , 1997, Conference Record of the Twenty Sixth IEEE Photovoltaic Specialists Conference - 1997.

[2]  Ronald A. Sinton,et al.  Quasi-steady-state photoconductance, a new method for solar cell material and device characterization , 1996, Conference Record of the Twenty Fifth IEEE Photovoltaic Specialists Conference - 1996.

[3]  Stefan W. Glunz,et al.  Theory and experiments on the back side reflectance of silicon wafer solar cells , 2008 .

[4]  Martin A. Green,et al.  21.5% Efficient thin silicon solar cell , 1996 .

[5]  M. Prince Silicon Solar Energy Converters , 1955 .

[6]  L. Jensen,et al.  Float-zone silicon for high volume production of solar cells , 2003, 3rd World Conference onPhotovoltaic Energy Conversion, 2003. Proceedings of.

[7]  M. Green,et al.  22.8% efficient silicon solar cell , 1989 .

[8]  M. Tanaka,et al.  Development of hit solar cells with more than 21% conversion efficiency and commercialization of highest performance hit modules , 2003, 3rd World Conference onPhotovoltaic Energy Conversion, 2003. Proceedings of.

[9]  B. Raabe,et al.  18.1% Efficiency for a Large Area, Multi-Crystalline Silicon Solar Cell , 2006, 2006 IEEE 4th World Conference on Photovoltaic Energy Conference.

[10]  D. Macdonald,et al.  Impact of Cr, Fe, Ni, Ti and W surface contamination on diffused and oxidised a-type crystalline silicon wafers , 2005 .

[11]  A. Cuevas,et al.  Millisecond minority carrier lifetimes in n-type multicrystalline silicon , 2002 .

[12]  A. Aberle,et al.  Record low surface recombination velocities on low-resistivity silicon solar cell substrates , 1996, Conference Record of the Twenty Fifth IEEE Photovoltaic Specialists Conference - 1996.

[13]  W. Pfleging,et al.  New simplified methods for patterning the rear contact of RP-PERC high-efficiency solar cells , 2000, Conference Record of the Twenty-Eighth IEEE Photovoltaic Specialists Conference - 2000 (Cat. No.00CH37036).

[14]  M. Green,et al.  24.5% efficiency PERT silicon solar cells on SEH MCZ substrates and cell performance on other SEH CZ and FZ substrates , 2001 .

[15]  M. Green,et al.  24% efficient perl silicon solar cell: Recent improvements in high efficiency silicon cell research , 1996 .

[16]  W. Warta,et al.  Investigation of carrier lifetime in p-type Cz-silicon: specific limitations and realistic prediction of cell performance , 2000, Conference Record of the Twenty-Eighth IEEE Photovoltaic Specialists Conference - 2000 (Cat. No.00CH37036).

[17]  G. Hahn,et al.  Avoiding boron-oxygen related degradation in highly boron doped Cz silicon , 2006 .

[18]  Wilhelm Warta,et al.  Minority carrier lifetime degradation in boron-doped Czochralski silicon , 2001 .

[19]  R. M. Swanson,et al.  27.5-percent silicon concentrator solar cells , 1986, IEEE Electron Device Letters.

[20]  David D. Smith,et al.  The choice of silicon wafer for the production of low-cost rear-contact solar cells , 2003, 3rd World Conference onPhotovoltaic Energy Conversion, 2003. Proceedings of.

[21]  H. Dekkers,et al.  Advanced dry processes for crystalline silicon solar cells , 2005, Conference Record of the Thirty-first IEEE Photovoltaic Specialists Conference, 2005..

[22]  R. Gonsiorawski,et al.  Improved contact metallization for high efficiency EFG polycrystalline silicon solar cells , 1990, IEEE Conference on Photovoltaic Specialists.

[23]  Ralf Preu,et al.  Laser‐fired rear contacts for crystalline silicon solar cells , 2002 .

[24]  Vernie Everett,et al.  65-micron thin monocrystalline silicon solar cell technology allowing 12-fold reduction in silicon usage , 2003, 3rd World Conference onPhotovoltaic Energy Conversion, 2003. Proceedings of.

[25]  Mehul C. Raval,et al.  solar cells , 2007 .

[26]  J. Schmidt,et al.  Low-temperature rear surface passivation schemes for >20% efficient silicon solar cells , 2003, 3rd World Conference onPhotovoltaic Energy Conversion, 2003. Proceedings of.

[27]  M. Green Solar Cells : Operating Principles, Technology and System Applications , 1981 .

[28]  R. Alcubilla,et al.  Surface passivation of p-type crystalline Si by plasma enhanced chemical vapor deposited amorphous SiC x :H films , 2001 .

[29]  P. Manshanden,et al.  ACE Designs: the beauty of rear contact solar cells , 2002, Conference Record of the Twenty-Ninth IEEE Photovoltaic Specialists Conference, 2002..

[30]  Stefan W. Glunz,et al.  Metal aerosol jet printing for solar cell metallization , 2007 .

[31]  Arthur Weeber,et al.  Interconnection through vias for improved efficiency and easy module manufacturing of crystalline silicon solar cells , 2001 .

[32]  S. Glunz,et al.  SHORT COMMUNICATION: ACCELERATED PUBLICATION: Multicrystalline silicon solar cells exceeding 20% efficiency , 2004 .

[33]  Guy Beaucarne,et al.  Back‐contact solar cells: a review , 2006 .

[34]  S. Glunz,et al.  Investigation of various surface passivation layers using oxide/nitride stacks of silicon solar cells , 2003, 3rd World Conference onPhotovoltaic Energy Conversion, 2003. Proceedings of.

[35]  Rudolf Hezel,et al.  Experimental evidence of parasitic shunting in silicon nitride rear surface passivated solar cells , 2002 .

[36]  S. Glunz,et al.  Phosphorus-doped SiC as an excellent p-type Si surface passivation layer , 2006 .

[37]  A. Cuevas,et al.  The trade-off between phosphorus gettering and thermal degradation in multicrystalline silicon , 2000 .

[38]  Wilhelm Warta,et al.  Towards 20% efficient silicon solar cells manufactured at 60 MWp per annum , 2003, 3rd World Conference onPhotovoltaic Energy Conversion, 2003. Proceedings of.

[39]  S. Riepe,et al.  Influence of High-Temperature Processes on Multicrystalline Silicon , 2003 .

[40]  A. Mette,et al.  Increasing the Efficiency of Screen-Printed Silicon Solar Cells by Light-Induced Silver Plating , 2006, 2006 IEEE 4th World Conference on Photovoltaic Energy Conference.

[41]  S. Riepe,et al.  High‐efficiency solar cells on phosphorus gettered multicrystalline silicon substrates , 2006 .

[42]  A. Blakers,et al.  Sliver Cells - A Complete Photovoltaic Solution , 2006, 2006 IEEE 4th World Conference on Photovoltaic Energy Conference.

[43]  S. Glunz,et al.  Comparison of boron- and gallium-doped p- type Czochralski silicon for photovoltaic application , 1999 .

[44]  Rolf Brendel,et al.  20.1%‐efficient crystalline silicon solar cell with amorphous silicon rear‐surface passivation , 2005 .

[45]  M. Green,et al.  24% efficient PERL structure silicon solar cells , 1990, IEEE Conference on Photovoltaic Specialists.

[46]  M. Schubert,et al.  Low-temperature a-Si:H/ZnO/Al back contacts for high-efficiency silicon solar cells , 2006 .

[47]  P. Vitanov,et al.  Influence of stoichiometry of direct plasma-enhanced chemical vapor deposited SiNx films and silicon substrate surface roughness on surface passivation , 2005 .

[48]  Mark Kerr,et al.  Surface passivation of silicon solar cells using plasma-enhanced chemical-vapour-deposited SiN films and thin thermal SiO2/plasma SiN stacks , 2001 .

[49]  O. Schultz,et al.  Silicon oxide/silicon nitride stack system for 20% efficient silicon solar cells , 2005, Conference Record of the Thirty-first IEEE Photovoltaic Specialists Conference, 2005..