Localization, fractality, and ergodicity in a monitored qubit

We study the statistical properties of a single two-level system (qubit) subject to repetitive ancilla-based measurements. This setup is a fundamental minimal model for exploring the intricate interplay between the unitary dynamics of the system and the nonunitary stochasticity introduced by quantum measurements, which is central to the phenomenon of measurement-induced phase transitions. We demonstrate that this"toy model"harbors remarkably rich dynamics, manifesting in the distribution function of the qubit's quantum states in the long-time limit. We uncover a compelling analogy with the phenomenon of Anderson localization, albeit governed by distinct underlying mechanisms. Specifically, the state distribution function of the monitored qubit, parameterized by a single angle on the Bloch sphere, exhibits diverse types of behavior familiar from the theory of Anderson transitions, spanning from complete localization to almost uniform delocalization, with fractality occurring between the two limits. By combining analytical solutions for various special cases with two complementary numerical approaches, we achieve a comprehensive understanding of the structure delineating the"phase diagram"of the model. We categorize and quantify the emergent regimes and identify two distinct phases of the monitored qubit: ergodic and nonergodic. Furthermore, we identify a genuinely localized phase within the nonergodic phase, where the state distribution functions consist of delta peaks, as opposed to the delocalized phase characterized by extended distributions. Identification of these phases and demonstration of transitions between them in a monitored qubit are our main findings.

[1]  T. Jin,et al.  Measurement-induced phase transition in a single-body tight-binding model , 2023, 2309.15034.

[2]  A. Mirlin,et al.  Measurement-Induced Phase Transition for Free Fermions above One Dimension. , 2023, Physical review letters.

[3]  K. Chahine,et al.  Entanglement phases, localization and multifractality of monitored free fermions in two dimensions , 2023, 2309.12391.

[4]  D. Saakian,et al.  Investigation of the Product of Random Matrices and Related Evolution Models , 2023, Mathematics.

[5]  Y. Gefen,et al.  Engineering unsteerable quantum states with active feedback , 2023, 2308.00384.

[6]  A. Mirlin,et al.  Theory of Free Fermions under Random Projective Measurements , 2023, Physical Review X.

[7]  Y. Gefen,et al.  Quantum state engineering by steering in the presence of errors , 2023, 2303.16329.

[8]  A. De Luca,et al.  Purification timescales in monitored fermions , 2023, Physical Review B.

[9]  A. Mirlin,et al.  Evolution of many-body systems under ancilla quantum measurements , 2023, Physical Review B.

[10]  Michael J. Hoffmann,et al.  Measurement-induced entanglement and teleportation on a noisy quantum processor , 2023, Nature.

[11]  D. Bernard,et al.  Nonlinear Sigma Models for Monitored Dynamics of Free Fermions , 2023, Physical Review X.

[12]  D. Bernard,et al.  Spacetime picture for entanglement generation in noisy fermion chains , 2023, 2302.12212.

[13]  B. Bauer,et al.  Measurement-induced entanglement transitions in quantum circuits of non-interacting fermions: Born-rule versus forced measurements , 2023, 2302.09094.

[14]  E. Altman,et al.  Nonlocality and entanglement in measured critical quantum Ising chains , 2023, Physical Review B.

[15]  Chao-Ming Jian,et al.  Entanglement in a one-dimensional critical state after measurements , 2023, Physical Review B.

[16]  Ryusuke Hamazaki,et al.  Localization properties in disordered quantum many-body dynamics under continuous measurement , 2023, Physical Review B.

[17]  M. Collura,et al.  Full counting statistics as probe of measurement-induced transitions in the quantum Ising chain , 2022, SciPost Physics.

[18]  Manuel F. Ferrer-Garcia,et al.  Topological transitions of the generalized Pancharatnam-Berry phase , 2022, Science advances.

[19]  Y. Gefen,et al.  Measurements on an Anderson chain , 2022, Physical Review B.

[20]  A. Pal,et al.  Disordered monitored free fermions , 2022, Physical Review B.

[21]  A. Dhar,et al.  Quantum resetting in continuous measurement induced dynamics of a qubit , 2022, Journal of Physics A: Mathematical and Theoretical.

[22]  M. Schirò,et al.  Volume-to-area law entanglement transition in a non-Hermitian free fermionic chain , 2022, SciPost Physics.

[23]  F. Schmidt-Kaler,et al.  Coherence requirements for quantum communication from hybrid circuit dynamics , 2022, SciPost Physics.

[24]  R. Nandkishore,et al.  Measurement-Induced Phases of Matter Require Feedback , 2022, PRX Quantum.

[25]  L. Fidkowski,et al.  Entanglement transitions with free fermions , 2022, Physical Review B.

[26]  M. Buchhold,et al.  Revealing measurement-induced phase transitions by pre-selection , 2022, 2208.10506.

[27]  M. Fisher,et al.  Random Quantum Circuits , 2022, Annual Review of Condensed Matter Physics.

[28]  Qin-Ying Yang,et al.  Keldysh nonlinear sigma model for a free-fermion gas under continuous measurements , 2022, Physical Review Research.

[29]  V. Alba,et al.  Entangled multiplets and spreading of quantum correlations in a continuously monitored tight-binding chain , 2022, Physical Review B.

[30]  M. Schirò,et al.  Enhanced entanglement negativity in boundary-driven monitored fermionic chains , 2022, Physical Review B.

[31]  Jin Ming Koh,et al.  Measurement-induced entanglement phase transition on a superconducting quantum processor with mid-circuit readout , 2022, Nature Physics.

[32]  M. Buchhold,et al.  Monitored open fermion dynamics: Exploring the interplay of measurement, decoherence, and free Hamiltonian evolution , 2022, Physical Review Research.

[33]  G. Kells,et al.  Topological transitions in weakly monitored free fermions , 2021, SciPost Physics.

[34]  M. Buchhold,et al.  Dynamics of measured many-body quantum chaotic systems , 2021, Physical Review Research.

[35]  Y. Gefen,et al.  Measurement-driven navigation in many-body Hilbert space: Active-decision steering , 2021, 2111.09306.

[36]  M. Dalmonte,et al.  Entanglement transitions from stochastic resetting of non-Hermitian quasiparticles , 2021, Physical Review B.

[37]  M. Dalmonte,et al.  Measurement-induced criticality in extended and long-range unitary circuits , 2021, SciPost Physics Core.

[38]  M. Collura,et al.  Growth of entanglement entropy under local projective measurements , 2021, Physical review B.

[39]  I. Siddiqi,et al.  Monitoring Fast Superconducting Qubit Dynamics Using a Neural Network , 2021, Physical Review X.

[40]  Leigh S. Martin,et al.  Demonstration of universal control between non-interacting qubits using the Quantum Zeno effect , 2021, npj Quantum Information.

[41]  A. Jordan,et al.  Experimental demonstration of continuous quantum error correction , 2021, Nature Communications.

[42]  M. Dalmonte,et al.  Dissipative Floquet Dynamics: from Steady State to Measurement Induced Criticality in Trapped-ion Chains , 2021, Quantum.

[43]  D. Huse,et al.  Measurement-induced quantum phases realized in a trapped-ion quantum computer , 2021, Nature Physics.

[44]  D. Saakian,et al.  Infinite Series of Singularities in the Correlated Random Matrices Product , 2021, Frontiers in Physics.

[45]  N. Yao,et al.  Measurement-Induced Transition in Long-Range Interacting Quantum Circuits. , 2021, Physical review letters.

[46]  A. Mirlin,et al.  Generalized quantum measurements with matrix product states: Entanglement phase transition and clusterization , 2021, Physical Review Research.

[47]  B. Swingle,et al.  Measurement-Induced Phase Transition in the Monitored Sachdev-Ye-Kitaev Model. , 2021, Physical review letters.

[48]  M. Dalmonte,et al.  Measurement-induced entanglement transitions in the quantum Ising chain: From infinite to zero clicks , 2021, Physical Review B.

[49]  M. Buchhold,et al.  Effective Theory for the Measurement-Induced Phase Transition of Dirac Fermions , 2021, Physical Review X.

[50]  B. Rosenow,et al.  Optimized steering: Quantum state engineering and exceptional points , 2021, Physical Review A.

[51]  W. Zhu,et al.  Quantum criticality in the nonunitary dynamics of (2+1) -dimensional free fermions , 2021, 2101.04320.

[52]  A. Biella,et al.  Many-Body Quantum Zeno Effect and Measurement-Induced Subradiance Transition , 2020, Quantum.

[53]  M. Barkeshli,et al.  Topological Order and Criticality in (2+1)D Monitored Random Quantum Circuits. , 2020, Physical review letters.

[54]  V. Khemani,et al.  Postselection-Free Entanglement Dynamics via Spacetime Duality. , 2020, Physical review letters.

[55]  A. Lucas,et al.  Measurement-induced phase transitions in quantum automaton circuits , 2020, Physical Review B.

[56]  A. Nahum,et al.  Measurement and Entanglement Phase Transitions in All-To-All Quantum Circuits, on Quantum Trees, and in Landau-Ginsburg Theory , 2020, 2009.11311.

[57]  M. Hafezi,et al.  Entanglement Entropy Scaling Transition under Competing Monitoring Protocols. , 2020, Physical review letters.

[58]  Y. Gefen,et al.  Detection of Quantum Interference without an Interference Pattern. , 2020, Physical review letters.

[59]  M. Dalmonte,et al.  Measurement-induced criticality in (2+1) -dimensional hybrid quantum circuits , 2020, 2007.02970.

[60]  A. Romito,et al.  The quantum Zeno effect with partial measurement and noisy dynamics , 2020, 2006.13970.

[61]  H. Büchler,et al.  Entanglement transition in the projective transverse field Ising model , 2020, 2006.09748.

[62]  A. Pal,et al.  Measurement-induced entanglement transitions in many-body localized systems , 2020, Physical Review Research.

[63]  M. Buchhold,et al.  Entanglement Transition in a Monitored Free-Fermion Chain: From Extended Criticality to Area Law. , 2020, Physical review letters.

[64]  Y. Ashida,et al.  Measurement-induced quantum criticality under continuous monitoring , 2020, 2004.11957.

[65]  D. Huse,et al.  Entanglement Phase Transitions in Measurement-Only Dynamics , 2020, Physical Review X.

[66]  T. Hsieh,et al.  Measurement-protected quantum phases , 2020, Physical Review Research.

[67]  M. Fisher,et al.  Emergent conformal symmetry in nonunitary random dynamics of free fermions , 2020, Physical Review Research.

[68]  M. Barkeshli,et al.  Measurement-induced topological entanglement transitions in symmetric random quantum circuits , 2020, Nature Physics.

[69]  A. Romito,et al.  The Quantum Zeno effect appears in stages , 2020, 2003.10476.

[70]  Y. Gefen,et al.  Observing a topological transition in weak-measurement-induced geometric phases , 2020, Physical Review Research.

[71]  D. Rossini,et al.  Measurement-induced dynamics of many-body systems at quantum criticality , 2020, 2001.11501.

[72]  E. Mucciolo,et al.  Nonuniversal entanglement level statistics in projection-driven quantum circuits , 2020, Physical Review B.

[73]  I. Danshita,et al.  Measurement-induced transitions of the entanglement scaling law in ultracold gases with controllable dissipation , 2020, 2001.03400.

[74]  Y. Gefen,et al.  Measurement-induced steering of quantum systems , 2019, Physical Review Research.

[75]  D. Huse,et al.  Critical properties of the measurement-induced transition in random quantum circuits , 2019, Physical Review B.

[76]  X. Qi,et al.  Quantum Error Correction in Scrambling Dynamics and Measurement-Induced Phase Transition. , 2019, Physical review letters.

[77]  D. Huse,et al.  Scalable Probes of Measurement-Induced Criticality. , 2019, Physical review letters.

[78]  W. Zhu,et al.  Measurement-induced phase transition: A case study in the nonintegrable model by density-matrix renormalization group calculations , 2019, Physical Review Research.

[79]  A. Ludwig,et al.  Measurement-induced criticality in random quantum circuits , 2019, Physical Review B.

[80]  Soonwon Choi,et al.  Theory of the phase transition in random unitary circuits with measurements , 2019, Physical Review B.

[81]  D. Huse,et al.  Dynamical Purification Phase Transition Induced by Quantum Measurements , 2019, Physical Review X.

[82]  H. Schomerus,et al.  Entanglement transition from variable-strength weak measurements , 2019, Physical Review B.

[83]  Matthew P. A. Fisher,et al.  Measurement-driven entanglement transition in hybrid quantum circuits , 2019, Physical Review B.

[84]  D. Saakian Semianalytical solution of the random-product problem of matrices and discrete-time random evolution , 2018, Physical Review E.

[85]  Matthew Fisher,et al.  Quantum Zeno effect and the many-body entanglement transition , 2018, Physical Review B.

[86]  Amos Chan,et al.  Unitary-projective entanglement dynamics , 2018, Physical Review B.

[87]  Brian Skinner,et al.  Measurement-Induced Phase Transitions in the Dynamics of Entanglement , 2018, Physical Review X.

[88]  V. Vedral,et al.  Engineering statistical transmutation of identical quantum particles , 2018, Physical Review B.

[89]  Antoine Tilloy,et al.  Entanglement in a fermion chain under continuous monitoring , 2018, SciPost Physics.

[90]  R. Schoelkopf,et al.  To catch and reverse a quantum jump mid-flight , 2018, Nature.

[91]  John Preskill,et al.  Quantum Computing in the NISQ era and beyond , 2018, Quantum.

[92]  D. Saakian Exact solution of the hidden Markov processes. , 2017, Physical Review E.

[93]  Peter G. Hufton,et al.  Intrinsic noise in systems with switching environments. , 2015, Physical review. E.

[94]  N. Sinitsyn,et al.  Quantum Zeno effect as a topological phase transition in full counting statistics and spin noise spectroscopy , 2013, 1310.3773.

[95]  K. Murch,et al.  Observing single quantum trajectories of a superconducting quantum bit , 2013, Nature.

[96]  R. Taranko,et al.  Quantum wire as a charge-qubit detector , 2012 .

[97]  R. Serfozo Basics of Applied Stochastic Processes , 2012 .

[98]  K. Yakubo,et al.  Testing the Order Parameter of the Anderson Transition , 2012 .

[99]  Y. Tourigny,et al.  Lyapunov exponents, one-dimensional Anderson localization and products of random matrices , 2012, 1207.0725.

[100]  O. Yevtushenko,et al.  Lévy flights and multifractality in quantum critical diffusion and in classical random walks on fractals. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[101]  O. Yevtushenko,et al.  Return probability and scaling exponents in the critical random matrix ensemble , 2011, 1104.3872.

[102]  O. Yevtushenko,et al.  Dynamical scaling for critical states: Validity of Chalker's ansatz for strong fractality , 2010, 1008.2694.

[103]  O. Yevtushenko,et al.  Supersymmetric virial expansion for time-reversal invariant disordered systems , 2009, 0910.0382.

[104]  Y. Gefen,et al.  Tomography of many-body weak values: Mach-Zehnder interferometry. , 2008, Physical review letters.

[105]  A. Mirlin,et al.  Anderson Transitions , 2007, 0707.4378.

[106]  Y. Gefen,et al.  Weak values of electron spin in a double quantum dot. , 2007, Physical review letters.

[107]  O. Yevtushenko,et al.  A supersymmetry approach to almost diagonal random matrices , 2007, cond-mat/0701444.

[108]  O. Yevtushenko,et al.  Virial expansion for almost diagonal random matrices , 2003, cond-mat/0301395.

[109]  B. Nikolić,et al.  Typical medium theory of Anderson localization: A local order parameter approach to strong-disorder effects , 2001, cond-mat/0106282.

[110]  A. Korotkov Selective quantum evolution of a qubit state due to continuous measurement , 2000, cond-mat/0008461.

[111]  Nathan,et al.  Continuous quantum measurement of two coupled quantum dots using a point contact: A quantum trajectory approach , 2000, cond-mat/0006333.

[112]  D. Aharonov Quantum to classical phase transition in noisy quantum computers , 1999, quant-ph/9910081.

[113]  A. Korotkov Continuous quantum measurement of a double dot , 1999, cond-mat/9909039.

[114]  S. Gurvitz Measurements with a noninvasive detector and dephasing mechanism , 1997, cond-mat/9706074.

[115]  D. DiVincenzo,et al.  Quantum computation with quantum dots , 1997, cond-mat/9701055.

[116]  C. Beenakker Random-matrix theory of quantum transport , 1996, cond-mat/9612179.

[117]  Y. Fyodorov,et al.  Distribution of local densities of states, order parameter function, and critical behavior near the Anderson transition. , 1994, Physical review letters.

[118]  Eljas Soisalon-Soininen,et al.  On Finding the Strongly Connected Components in a Directed Graph , 1994, Inf. Process. Lett..

[119]  Jens Lorenz,et al.  Numerical solution of a functional equation on a circle , 1992 .

[120]  A. Lichtenberg,et al.  Regular and Chaotic Dynamics , 1992 .

[121]  R. Jensen,et al.  Direct determination of the f(α) singularity spectrum , 1989 .

[122]  L. Pastur,et al.  Introduction to the Theory of Disordered Systems , 1988 .

[123]  Jensen,et al.  Fractal measures and their singularities: The characterization of strange sets. , 1987, Physical review. A, General physics.

[124]  H. G. E. Hentschel,et al.  The infinite number of generalized dimensions of fractals and strange attractors , 1983 .

[125]  D. Newton AN INTRODUCTION TO ERGODIC THEORY (Graduate Texts in Mathematics, 79) , 1982 .

[126]  L. Gor’kov,et al.  On the theory of electrons localized in the field of defects , 1979 .

[127]  D. Hofstadter Energy levels and wave functions of Bloch electrons in rational and irrational magnetic fields , 1976 .

[128]  Robert E. Tarjan,et al.  Depth-First Search and Linear Graph Algorithms , 1972, SIAM J. Comput..

[129]  Richard A. Mann,et al.  A FORTRAN IV Primer , 1972 .

[130]  B. A. Farbey,et al.  Structural Models: An Introduction to the Theory of Directed Graphs , 1966 .

[131]  H. Furstenberg Noncommuting random products , 1963 .

[132]  L. Schmetterer Zeitschrift fur Wahrscheinlichkeitstheorie und Verwandte Gebiete. , 1963 .

[133]  P. Anderson Absence of Diffusion in Certain Random Lattices , 1958 .

[134]  P. G. Harper,et al.  Single Band Motion of Conduction Electrons in a Uniform Magnetic Field , 1955 .

[135]  M. Silveri,et al.  Diagnosing measurement-induced phase transitions without trajectory post-selection through predetermined measurements , 2023 .

[136]  R. Nandkishore,et al.  Measurement-induced phases of matter require adaptive dynamics , 2022 .

[137]  W. Hager,et al.  and s , 2019, Shallow Water Hydraulics.

[138]  R. Bronson Chapter 4 – Eigenvalues, Eigenvectors, and Differential Equations , 2014 .

[139]  W. Marsden I and J , 2012 .

[140]  Design and Analysis of Algorithms , 2012, Lecture Notes in Computer Science.

[141]  M. Mirzakhani,et al.  Introduction to Ergodic theory , 2010 .

[142]  Aric Hagberg,et al.  Exploring Network Structure, Dynamics, and Function using NetworkX , 2008, Proceedings of the Python in Science Conference.

[143]  V. I. Perel’,et al.  Probability distribution for the transmission of an electron through a chain of randomly placed centers , 1984 .

[144]  Dean Isaacson,et al.  A characterization of geometric ergodicity , 1979 .

[145]  R. Mises,et al.  Praktische Verfahren der Gleichungsauflösung . , 1929 .

[146]  S. Finch Lyapunov Exponents , 2022 .

[147]  and as an in , 2022 .