A note on determinantal representation of a Schröder-König-like simultaneous method for finding polynomial zeros

Abstract Using Pade approximation, Sakurai, Torii and Sugiura derived in the paper (Sakurai et al., 1991) the generalized iterative method of order n + 2 for finding all zeros of a polynomial, where n is the highest order of a polynomial derivative involved in the presented iterative formula. In this note we give the determinantal representation of this method and analyze procedures for its implementation and some computational aspects.

[1]  Petko D. Proinov On the local convergence of Ehrlich method for numerical computation of polynomial zeros , 2016 .

[2]  Robert A. Leslie How not to repeatedly differentiate a reciprocal , 1991 .

[3]  Miodrag S. Petković,et al.  Point Estimation of Root Finding Methods , 2008 .

[4]  Dragoslav Herceg,et al.  On rediscovered methods for solving equations , 1999 .

[5]  Louis W. Ehrlich,et al.  A modified Newton method for polynomials , 1967, CACM.

[6]  Zhonggang Zeng A method computing multiple roots of inexact polynomials , 2003, ISSAC '03.

[7]  B. Kalantari Polynomial Root-finding and Polynomiography , 2008 .

[8]  G. Stewart,et al.  On Infinitely Many Algorithms for Solving Equations , 1998 .

[9]  Miodrag S. Petkovic,et al.  On Schröder's families of root-finding methods , 2010, J. Comput. Appl. Math..

[10]  Tetsuya Sakurai,et al.  A high-order iterative formula for simultaneous determination of zeros of a polynomial , 1991 .

[11]  M. S. Petković,et al.  Construction of zero-finding methods by Weierstrass functions , 2007, Appl. Math. Comput..

[12]  Giuseppe Fiorentino,et al.  Design, analysis, and implementation of a multiprecision polynomial rootfinder , 2000, Numerical Algorithms.

[13]  H. J. Hamilton,et al.  Roots of equations by functional iteration , 1946 .

[14]  Abdel Wahab M. Anourein An improvement on two iteration methods for simultaneous determination of the zeros of a polynomial , 1977 .

[15]  Petko D. Proinov New general convergence theory for iterative processes and its applications to Newton-Kantorovich type theorems , 2010, J. Complex..

[16]  Ernst Schröder,et al.  Ueber unendlich viele Algorithmen zur Auflösung der Gleichungen , 1870 .

[17]  Victor Y. Pan,et al.  Numerical methods for roots of polynomials , 2007 .

[18]  Tetsuya Sakurai,et al.  An iterative method for algebraic equation by Padé approximation , 2005, Computing.

[19]  George Loizou,et al.  Iteration Functions re-visited , 2017, J. Comput. Appl. Math..

[20]  P. Morse,et al.  Principles of Numerical Analysis , 1954 .

[21]  M. Farmer,et al.  Computing the Zeros of Polynomials using the Divide and Conquer Approach , 2014 .

[22]  Miodrag S. Petkovic,et al.  A new fourth-order family of simultaneous methods for finding polynomial zeros , 2005, Appl. Math. Comput..

[23]  Petko D. Proinov,et al.  Semilocal convergence of Chebyshev-like root-finding method for simultaneous approximation of polynomial zeros , 2014, Appl. Math. Comput..

[24]  P. Morse,et al.  Principles of Numerical Analysis , 1954 .

[25]  Jim Euchner Design , 2014, Catalysis from A to Z.

[26]  Tetsuya Sakurai,et al.  On some simultaneous methods based on Weierstrass' correction , 1996 .