Repairing Algebraic Geometry Codes

Minimum storage regenerating codes have minimum storage of data in each node and therefore are maximal distance separable (for short) codes. Thus, the number of nodes is upper-bounded by <inline-formula> <tex-math notation="LaTeX">$2^{ {\mathfrak {b}}}$ </tex-math></inline-formula>, where <inline-formula> <tex-math notation="LaTeX">${\mathfrak {b}}$ </tex-math></inline-formula> is the bits of data stored in each node. From both theoretical and practical points of view (see the details in <xref ref-type="sec" rid="sec1">Section 1</xref>), it is natural to consider regenerating codes that nearly have minimum storage of data, and meanwhile, the number of nodes is unbounded. One of the candidates for such regenerating codes is an algebraic geometry code. In this paper, we generalize the repairing algorithm of Reed–Solomon codes given by Guruswami and Wotters to algebraic geometry codes and present a repairing algorithm for arbitrary one-point algebraic geometry codes. By applying our repairing algorithm to the one-point algebraic geometry codes based on the Garcia–Stichtenoth tower, one can repair a code of rate <inline-formula> <tex-math notation="LaTeX">$1- \varepsilon $ </tex-math></inline-formula> and length <inline-formula> <tex-math notation="LaTeX">$n$ </tex-math></inline-formula> over <inline-formula> <tex-math notation="LaTeX">$\mathbb {F}_{q}$ </tex-math></inline-formula> with bandwidth <inline-formula> <tex-math notation="LaTeX">$(n-1)(1- \tau)\log q$ </tex-math></inline-formula> for any <inline-formula> <tex-math notation="LaTeX">$\varepsilon =2^{(\tau -1/2)\log q}$ </tex-math></inline-formula> with a real <inline-formula> <tex-math notation="LaTeX">$\tau \in (0,1/2)$ </tex-math></inline-formula>. In addition, storage in each node for an algebraic geometry code is close to the minimum storage. Due to nice structures of Hermitian curves, repairing of Hermitian codes is also investigated. As a result, we are able to show that algebraic geometry codes are regenerating codes with good parameters.

[1]  Cheng Huang,et al.  Optimal Repair of MDS Codes in Distributed Storage via Subspace Interference Alignment , 2011, ArXiv.

[2]  Rudolf Lide,et al.  Finite fields , 1983 .

[3]  Ignacio Cascudo,et al.  Asymptotically Good Ideal Linear Secret Sharing with Strong Multiplication over Any Fixed Finite Field , 2009, CRYPTO.

[4]  Yunnan Wu,et al.  A Survey on Network Codes for Distributed Storage , 2010, Proceedings of the IEEE.

[5]  Dimitris S. Papailiopoulos,et al.  Optimal locally repairable codes and connections to matroid theory , 2013, 2013 IEEE International Symposium on Information Theory.

[6]  H. Stichtenoth,et al.  A tower of Artin-Schreier extensions of function fields attaining the Drinfeld-Vladut bound , 1995 .

[7]  Cheng Huang,et al.  Permutation code: Optimal exact-repair of a single failed node in MDS code based distributed storage systems , 2011, 2011 IEEE International Symposium on Information Theory Proceedings.

[8]  Kannan Ramchandran,et al.  On the Existence of Optimal Exact-Repair MDS Codes for Distributed Storage , 2010, ArXiv.

[9]  Henning Stichtenoth,et al.  Algebraic function fields and codes , 1993, Universitext.

[10]  Alexandros G. Dimakis,et al.  Network Coding for Distributed Storage Systems , 2007, IEEE INFOCOM 2007 - 26th IEEE International Conference on Computer Communications.

[11]  Jehoshua Bruck,et al.  Zigzag Codes: MDS Array Codes With Optimal Rebuilding , 2011, IEEE Transactions on Information Theory.

[12]  Yunghsiang Sam Han,et al.  Exact regenerating codes for Byzantine fault tolerance in distributed storage , 2012, 2012 Proceedings IEEE INFOCOM.

[13]  Kenneth W. Shum,et al.  A low-complexity algorithm for the construction of algebraic-geometric codes better than the Gilbert-Varshamov bound , 2001, IEEE Trans. Inf. Theory.

[14]  W. Marsden I and J , 2012 .

[15]  H. Stichtenoth,et al.  On the Asymptotic Behaviour of Some Towers of Function Fields over Finite Fields , 1996 .

[16]  K. Conrad,et al.  Finite Fields , 2018, Series and Products in the Development of Mathematics.

[17]  Itzhak Tamo,et al.  A Family of Optimal Locally Recoverable Codes , 2013, IEEE Transactions on Information Theory.

[18]  Kannan Ramchandran,et al.  Explicit codes minimizing repair bandwidth for distributed storage , 2009, 2010 IEEE Information Theory Workshop on Information Theory (ITW 2010, Cairo).

[19]  V. D. Goppa Codes on Algebraic Curves , 1981 .

[20]  A. Robert Calderbank,et al.  An Improved Sub-Packetization Bound for Minimum Storage Regenerating Codes , 2013, IEEE Transactions on Information Theory.

[21]  Nihar B. Shah,et al.  Optimal Exact-Regenerating Codes for Distributed Storage at the MSR and MBR Points via a Product-Matrix Construction , 2010, IEEE Transactions on Information Theory.

[22]  Kannan Ramchandran,et al.  Asymptotic Interference Alignment for Optimal Repair of MDS Codes in Distributed Storage , 2013, IEEE Transactions on Information Theory.