Active Control of Camera Parameters for Object Detection Algorithms

Camera parameters not only play an important role in determining the visual quality of perceived images, but also affect the performance of vision algorithms, for a vision-guided robot. By quantitatively evaluating four object detection algorithms, with respect to varying ambient illumination, shutter speed and voltage gain, it is observed that the performance of the algorithms is highly dependent on these variables. From this observation, a novel active control of camera parameters method is proposed, to make robot vision more robust under different light conditions. Experimental results demonstrate the effectiveness of our proposed approach, which improves the performance of object detection algorithms, compared with the conventional auto-exposure algorithm.

[1]  Huimin Lu,et al.  Camera parameters auto-adjusting technique for robust robot vision , 2010, 2010 IEEE International Conference on Robotics and Automation.

[2]  Daniel Keren,et al.  Image detection under varying illumination and pose , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[3]  Koen E. A. van de Sande,et al.  Selective Search for Object Recognition , 2013, International Journal of Computer Vision.

[4]  Kjell Brunnström,et al.  Active fixation for scene exploration , 1996, International Journal of Computer Vision.

[5]  Geoffrey E. Hinton,et al.  Deep Lambertian Networks , 2012, ICML.

[6]  Wen Gao,et al.  A comparative study on illumination preprocessing in face recognition , 2013, Pattern Recognit..

[7]  Atsushi Shimada,et al.  Object Detection under Varying Illumination Based on Adaptive Background Modeling Considering Spatial Locality , 2009, PSIVT.

[8]  Shimon Ullman,et al.  Face Recognition: The Problem of Compensating for Changes in Illumination Direction , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  Jian Sun,et al.  Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[10]  Yiannis Aloimonos,et al.  Active vision , 2004, International Journal of Computer Vision.

[11]  Michael McGill,et al.  Introduction to Modern Information Retrieval , 1983 .

[12]  Pietro Perona,et al.  Microsoft COCO: Common Objects in Context , 2014, ECCV.

[13]  Eckehard G. Steinbach,et al.  Image-based object detection under varying illumination in environments with specular surfaces , 2011, 2011 18th IEEE International Conference on Image Processing.

[14]  Michael S. Bernstein,et al.  ImageNet Large Scale Visual Recognition Challenge , 2014, International Journal of Computer Vision.

[15]  In-So Kweon,et al.  Auto-adjusting camera exposure for outdoor robotics using gradient information , 2014, 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[16]  John K. Tsotsos,et al.  On Sensor Bias in Experimental Methods for Comparing Interest-Point, Saliency, and Recognition Algorithms , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[17]  R. Johansson,et al.  Color-based detection robust to varying illumination spectrum , 2013, 2013 IEEE Workshop on Robot Vision (WORV).

[18]  David J. Kriegman,et al.  What Is the Set of Images of an Object Under All Possible Illumination Conditions? , 1998, International Journal of Computer Vision.

[19]  Shang-Hong Lai,et al.  Robust face recognition under lighting variations , 2004, ICPR 2004.

[20]  Daniel Keren,et al.  Efficient detection under varying illumination conditions and image plane rotations , 2004, Comput. Vis. Image Underst..

[21]  Bill Triggs,et al.  Histograms of oriented gradients for human detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[22]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[23]  Trevor Darrell,et al.  Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation , 2013, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[24]  Jay Martin Tenenbaum,et al.  Accommodation in computer vision , 1971 .

[25]  Alan Yuille,et al.  Active Vision , 2014, Computer Vision, A Reference Guide.

[26]  Josef Kittler,et al.  An Illumination Insensitive Representation for Face Verification in the Frequency Domain , 2006, ICPR.

[27]  Anton Kummert,et al.  A Generic Parameter Optimization Workflow for Camera Control Algorithms , 2015, 2015 IEEE 18th International Conference on Intelligent Transportation Systems.

[28]  Glenn Healey,et al.  Radiometric CCD camera calibration and noise estimation , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[29]  Nitin Sampat,et al.  System implications of implementing auto-exposure on consumer digital cameras , 1999, Electronic Imaging.

[30]  Luc Van Gool,et al.  The Pascal Visual Object Classes (VOC) Challenge , 2010, International Journal of Computer Vision.

[31]  David A. McAllester,et al.  Object Detection with Discriminatively Trained Part Based Models , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[32]  John K. Tsotsos On the relative complexity of active vs. passive visual search , 2004, International Journal of Computer Vision.