Development of pixel-wise U-Net model to assess performance of cereal sowing

[1]  Brian L. Steward,et al.  Automatic corn plant population measurement using machine vision , 2001 .

[2]  D. Slaughter,et al.  RTD-SEPs: Real-time detection of stem emerging points and classification of crop-weed for robotic weed control in producing tomato , 2020 .

[3]  S. Gürsoy Performance Evaluation of the Row Cleaner on a No-Till Planter , 2014 .

[4]  Ran Zhang,et al.  DNetUnet: a semi-supervised CNN of medical image segmentation for super-computing AI service , 2020, The Journal of Supercomputing.

[5]  Rajeev Kumar,et al.  Detection of flow of seeds in the seed delivery tube and choking of boot of a seed drill , 2018, Comput. Electron. Agric..

[6]  Badri Basnet,et al.  Planters and their components: types, attributes, functional requirements, classification and description (ACIAR Monograph No. 121) , 2006 .

[7]  Aurélien Géron,et al.  Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems , 2017 .

[8]  Arzu Yazgi,et al.  Measurement of seed spacing uniformity performance of a precision metering unit as function of the number of holes on vacuum plate , 2014 .

[9]  Henrik Skov Midtiby,et al.  Estimating the plant stem emerging points (PSEPs) of sugar beets at early growth stages , 2012 .

[10]  Trevor Darrell,et al.  Fully Convolutional Networks for Semantic Segmentation , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  H. Griepentrog,et al.  The influence of row width and seed spacing on uniformity of plant spatial distributions , 2009 .

[12]  Taghi M. Khoshgoftaar,et al.  A survey on Image Data Augmentation for Deep Learning , 2019, Journal of Big Data.

[13]  Rasmus Nyholm Jørgensen,et al.  A Novel Locating System for Cereal Plant Stem Emerging Points’ Detection Using a Convolutional Neural Network , 2018, Sensors.

[14]  Jianping Hu,et al.  Development and Experimental Analysis of a Seeding Quantity Sensor for the Precision Seeding of Small Seeds , 2019, Sensors.

[15]  Randal K. Taylor,et al.  Field scale row unit vibration affecting planting quality , 2019, Precision Agriculture.

[16]  Joachim Müller,et al.  Laboratory measurement of seed drill seed spacing and velocity of fall of seeds using high-speed camera system , 2006 .

[17]  G. Voicu,et al.  MATHEMATICAL MODEL FOR SOWING PRECISION ESTIMATION OF VACUUM SEED METERING DEVICE , 2019 .

[18]  Andreas Kamilaris,et al.  Deep learning in agriculture: A survey , 2018, Comput. Electron. Agric..

[19]  Lie Tang,et al.  Automatic inter-plant spacing sensing at early growth stages using a 3D vision sensor , 2012 .

[20]  Thomas Brox,et al.  U-Net: Convolutional Networks for Biomedical Image Segmentation , 2015, MICCAI.

[21]  Hossein Navid,et al.  Development of an infrared seed-sensing system to estimate flow rates based on physical properties of seeds , 2019, Comput. Electron. Agric..

[22]  Ajit K. Srivastava,et al.  Engineering Principles of Agricultural Machines , 1993 .

[23]  Seed Flow Monitoring in Wireless Sensor Networks , 2013 .

[24]  M. S. Laursen,et al.  RoboWeedSupport-Sub Millimeter Weed Image Acquisition in Cereal Crops with Speeds up till 50 Km/H , 2017 .

[25]  M. F. Kocher,et al.  OPTO-ELECTRONIC SENSOR SYSTEM FOR RAPID EVALUATION OF PLANTER SEED SPACING UNIFORMITY , 1998 .

[26]  Aaron E. Maxwell,et al.  Semantic Segmentation Deep Learning for Extracting Surface Mine Extents from Historic Topographic Maps , 2020, Remote. Sens..

[27]  M. F. Kocher,et al.  LABORATORY AND FIELD TESTING OF SEED SPACING UNIFORMITY FOR SUGARBEET PLANTERS , 1997 .

[28]  Trevor Darrell,et al.  Fully convolutional networks for semantic segmentation , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[29]  P. R. Jayan,et al.  Planter design in relation to the physical properties of seeds , 2006 .

[30]  Jian Jin,et al.  Corn plant sensing using real‐time stereo vision , 2009, J. Field Robotics.

[31]  Cyrill Stachniss,et al.  Real-Time Semantic Segmentation of Crop and Weed for Precision Agriculture Robots Leveraging Background Knowledge in CNNs , 2017, 2018 IEEE International Conference on Robotics and Automation (ICRA).

[32]  Takashi Kataoka,et al.  Estimation of mass flow of seeds using fibre sensor and multiple linear regression modelling , 2013 .

[33]  J. Baerdemaeker,et al.  Evaluation of Seed Distribution Uniformity of a Multi-flight Auger as a Grain Drill Metering Device , 2006 .

[34]  Lie Tang,et al.  Within-row spacing sensing of maize plants using 3D computer vision , 2014 .

[35]  Lie Tang,et al.  Real-Time Crop Row Image Reconstruction for Automatic Emerged Corn Plant Spacing Measurement , 2008 .

[36]  Lie Tang,et al.  Inter-plant Spacing Sensing at Early Growth Stages Using a Time-of-Flight of Light Based 3D Vision Sensor , 2010 .

[37]  Ajit K. Srivastava,et al.  Engineering Principles of Agricultural Machines, Second Edition , 2006 .

[38]  John P. Fulton,et al.  Field Validation of Seed Meter Performance at Varying Seeding Rates and Ground Speeds , 2019, Applied Engineering in Agriculture.

[39]  Zahra Abdolahzare,et al.  Real time laboratory and field monitoring of the effect of the operational parameters on seed falling speed and trajectory of pneumatic planter , 2018, Comput. Electron. Agric..

[40]  Qingfeng Zhang,et al.  Performance Monitoring System for Precision Planter Based on MSP430-CT171 , 2010, CCTA.

[41]  Andrew Zisserman,et al.  Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.

[42]  Terry Griffin,et al.  Development of high-speed camera hardware and software package to evaluate real-time electric seed meter accuracy of a variable rate planter , 2017, Comput. Electron. Agric..

[43]  A. A. Al-Mallahi,et al.  Application of fibre sensor in grain drill to estimate seed flow under field operational conditions , 2016, Comput. Electron. Agric..