GPU accelerated real-time multi-functional spectral-domain optical coherence tomography system at 1300nm

We present a GPU accelerated multi-functional spectral domain optical coherence tomography system at 1300nm. The system is capable of real-time processing and display of every intensity image, comprised of 512 pixels by 2048 A-lines acquired at 20 frames per second. The update rate for all four images with size of 512 pixels by 2048 A-lines simultaneously (intensity, phase retardation, flow and en face view) is approximately 10 frames per second. Additionally, we report for the first time the characterization of phase retardation and diattenuation by a sample comprised of a stacked set of polarizing film and wave plate. The calculated optic axis orientation, phase retardation and diattenuation match well with expected values. The speed of each facet of the multi-functional OCT CPU-GPU hybrid acquisition system, intensity, phase retardation, and flow, were separately demonstrated by imaging a horseshoe crab lateral compound eye, a non-uniformly heated chicken muscle, and a microfluidic device. A mouse brain with thin skull preparation was imaged in vivo and demonstrated the capability of the system for live multi-functional OCT visualization.

[1]  S. Yun,et al.  In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve. , 2004, Optics express.

[2]  J. Izatt,et al.  In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography. , 1997, Optics letters.

[3]  J. D. de Boer,et al.  Doppler standard deviation imaging for clinical monitoring of in vivo human skin blood flow. , 2000, Optics letters.

[4]  Barry Cense,et al.  Collagen denaturation can be quantified in burned human skin using polarization-sensitive optical coherence tomography. , 2004, Burns : journal of the International Society for Burn Injuries.

[5]  Zhongping Chen,et al.  Optical Doppler tomographic imaging of fluid flow velocity in highly scattering media. , 1997, Optics letters.

[6]  Adrien E. Desjardins,et al.  Real-Time FPGA Processing for High-Speed Optical Frequency Domain Imaging , 2009, IEEE Transactions on Medical Imaging.

[7]  Kang Zhang,et al.  Real-time 4D signal processing and visualization using graphics processing unit on a regular nonlinear-k Fourier-domain OCT system , 2010, Optics express.

[8]  Jun Zhang,et al.  Determination of burn depth by polarization-sensitive optical coherence tomography , 1999, Photonics West - Biomedical Optics.

[9]  K. Seung,et al.  Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: comparison with intravascular ultrasound. , 2002, Journal of the American College of Cardiology.

[10]  Ruikang K. Wang,et al.  High speed spectral domain optical coherence tomography for retinal imaging at 500,000 A‑lines per second , 2011, Biomedical optics express.

[11]  S. Yun,et al.  Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 microm. , 2005, Optics express.

[12]  Daniel X Hammer,et al.  Real-time processing for Fourier domain optical coherence tomography using a field programmable gate array. , 2008, The Review of scientific instruments.

[13]  J. Fujimoto,et al.  Optical biopsy and imaging using optical coherence tomography , 1995, Nature Medicine.

[14]  E. Fischer BIREFRINGENCE AND ULTRASTRUCTURE OF MUSCLE , 1947, Annals of the New York Academy of Sciences.

[15]  Y. Yang,et al.  Chitosan microchannel scaffolds for tendon tissue engineering characterized using optical coherence tomography. , 2007, Tissue engineering.

[16]  Teresa C. Chen,et al.  Invivo depth-resolved birefringence measurements of the human retinal nerve fiber layer by polarization-sensitive optical coherence tomography. , 2002, Optics letters.

[17]  M. V. van Gemert,et al.  Two-dimensional birefringence imaging in biological tissue using polarization-sensitive optical coherence tomography , 1997, European Conference on Biomedical Optics.

[18]  Zhongping Chen,et al.  Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity. , 2000, Optics letters.

[19]  Zhihua Ding,et al.  Phase-resolved functional optical coherence tomography: simultaneous imaging of in situ tissue structure, blood flow velocity, standard deviation, birefringence, and Stokes vectors in human skin. , 2002, Optics letters.

[20]  Barry Cense,et al.  In vivo birefringence and thickness measurements of the human retinal nerve fiber layer using polarization-sensitive optical coherence tomography. , 2004, Journal of biomedical optics.

[21]  Igor Meglinski,et al.  Turbulence monitoring with Doppler Optical Coherence Tomography , 2007 .

[22]  E. Halpern,et al.  Evaluation of intracoronary stenting by intravascular optical coherence tomography , 2003, Heart.

[23]  J. Nelson,et al.  In vivo burn depth determination by high-speed fiber-based polarization sensitive optical coherence tomography. , 2001, Journal of biomedical optics.

[24]  Mark C. Pierce,et al.  In vivo depth-resolved birefringence measurements of the human retinal nerve fiber layer by polarization-sensitive optical coherence tomography , 2002 .

[25]  Thilo Gambichler,et al.  Applications of optical coherence tomography in dermatology. , 2005, Journal of dermatological science.

[26]  Zhongping Chen,et al.  Determination of the depth-resolved Stokes parameters of light backscattered from turbid media by use of polarization-sensitive optical coherence tomography. , 1999, Optics letters.

[27]  Barry Cense,et al.  Advances in optical coherence tomography imaging for dermatology. , 2004, The Journal of investigative dermatology.

[28]  Teresa C. Chen,et al.  Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography. , 2004, Optics express.

[29]  A. Fercher,et al.  Performance of fourier domain vs. time domain optical coherence tomography. , 2003, Optics express.

[30]  S. Yun,et al.  High-speed spectral-domain optical coherence tomography at 1.3 mum wavelength. , 2003, Optics express.

[31]  J. Fujimoto,et al.  Ultrahigh-resolution ophthalmic optical coherence tomography , 2001, Nature Medicine.

[32]  Zhongping Chen,et al.  Determination of the depth-resolved Stokes parameters of light backscattered from turbid media by use of polarization-sensitive optical coherence tomography. , 1999, Optics Letters.

[33]  J. Fujimoto,et al.  Optical coherence tomography of the human retina. , 1995, Archives of ophthalmology.

[34]  Yuuki Watanabe,et al.  Real-time display on Fourier domain optical coherence tomography system using a graphics processing unit. , 2009, Journal of biomedical optics.

[35]  B E Bouma,et al.  High resolution in vivo intra-arterial imaging with optical coherence tomography , 1999, Heart.

[36]  R Birngruber,et al.  Optical coherence tomography of the human skin. , 1997, Journal of the American Academy of Dermatology.

[37]  Barry Cense,et al.  Real-time multi-functional optical coherence tomography. , 2003, Optics express.

[38]  Wen-Chuan Kuo,et al.  Assessment of arterial characteristics in human atherosclerosis by extracting optical properties from polarization-sensitive optical coherence tomography. , 2008, Optics express.

[39]  G. Ripandelli,et al.  Optical coherence tomography. , 1998, Seminars in ophthalmology.

[40]  Barry Cense,et al.  In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical coherence tomography. , 2003, Optics express.

[41]  Kate Sugden,et al.  Processing and rendering of Fourier domain optical coherence tomography images at a line rate over 524 kHz using a graphics processing unit. , 2011, Journal of biomedical optics.

[42]  Barry Cense,et al.  Jones matrix analysis for a polarization-sensitive optical coherence tomography system using fiber-optic components. , 2004, Optics letters.

[43]  A. Fercher,et al.  In vivo human retinal imaging by Fourier domain optical coherence tomography. , 2002, Journal of biomedical optics.

[44]  Daniel Fried,et al.  Imaging caries lesions and lesion progression with polarization-sensitive optical coherence tomography , 2002, SPIE BiOS.

[45]  Barry Cense,et al.  Autocalibration of spectral-domain optical coherence tomography spectrometers for in vivo quantitative retinal nerve fiber layer birefringence determination. , 2007, Journal of biomedical optics.

[46]  A Rollins,et al.  In vivo video rate optical coherence tomography. , 1998, Optics express.

[47]  Peter Koch,et al.  In vivo Fourier-domain full-field OCT of the human retina with 1.5 million A-lines/s. , 2010, Optics letters.

[48]  Brett E Bouma,et al.  Measurement of collagen and smooth muscle cell content in atherosclerotic plaques using polarization-sensitive optical coherence tomography. , 2007, Journal of the American College of Cardiology.

[49]  T. Mitsui,et al.  Dynamic Range of Optical Reflectometry with Spectral Interferometry , 1999 .

[50]  J. Fujimoto,et al.  Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging , 1992 .

[51]  B. Bouma,et al.  Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography. , 2003, Optics letters.

[52]  S A Boppart,et al.  Optical coherence tomography imaging in developmental biology. , 2000, Methods in molecular biology.

[53]  Hiroshi Ishikawa,et al.  Optical coherence tomography (OCT) macular and peripapillary retinal nerve fiber layer measurements and automated visual fields. , 2004, American journal of ophthalmology.

[54]  R. W. Cox Hibernoma: the lipoma of immature adipose tissue. , 1954, The Journal of pathology and bacteriology.

[55]  Teresa C. Chen,et al.  In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical Doppler tomography , 2003 .

[56]  A. Fercher,et al.  Polarization–Sensitive Optical Coherence Tomography of Dental Structures , 1999, Caries Research.

[57]  Daniel L Marks,et al.  Three-dimensional optical coherence tomography of the embryonic murine cardiovascular system. , 2006, Journal of biomedical optics.

[58]  Adrian Bradu,et al.  Real-time resampling in Fourier domain optical coherence tomography using a graphics processing unit. , 2010, Journal of biomedical optics.

[59]  M. Pierce,et al.  Simultaneous intensity, birefringence, and flow measurements with high-speed fiber-based optical coherence tomography. , 2002, Optics letters.

[60]  Changhuei Yang,et al.  Sensitivity advantage of swept source and Fourier domain optical coherence tomography. , 2003, Optics express.

[61]  T G van Leeuwen,et al.  High-flow-velocity and shear-rate imaging by use of color Doppler optical coherence tomography. , 1999, Optics letters.