Continuous-discrete interval observers for systems with discrete measurements

We consider linear continuous-time systems with input, output and additive disturbances when measurements are only available at discrete instants. For these systems, we solve a state estimation problem by constructing a family of continuous-discrete time-invariant interval observers. These interval observers are composed of four copies of the studied system accompanied with appropriate outputs which give upper and lower bounds for the solutions.

[1]  F. Chernousko State Estimation for Dynamic Systems , 1993 .

[2]  A. Vande Wouwer,et al.  Improving continuous–discrete interval observers with application to microalgae-based bioprocesses , 2009 .

[3]  Hassan Hammouri,et al.  Constant gain observer for continuous-discrete time uniformly observable systems , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[4]  J. Gauthier,et al.  High gain estimation for nonlinear systems , 1992 .

[5]  Eduardo F. Camacho,et al.  Guaranteed state estimation by zonotopes , 2005, Autom..

[6]  Vincent Andrieu,et al.  Observer design for Lipschitz systems with discrete-time measurements , 2010, 49th IEEE Conference on Decision and Control (CDC).

[7]  Denis V. Efimov,et al.  Stabilization of nonlinear uncertain systems based on interval observers , 2011, IEEE Conference on Decision and Control and European Control Conference.

[8]  Eric Walter,et al.  Interval observers for continuous-time linear systems with discrete-time outputs , 2012, 2012 American Control Conference (ACC).

[9]  V. Alcaraz-González,et al.  Robust Nonlinear Observers for Bioprocesses: Application to Wastewater Treatment , 2007 .

[10]  Eric Walter,et al.  Guaranteed estimation of the parameters of nonlinear continuous‐time models: Contributions of interval analysis , 2011 .

[11]  J. Gouzé,et al.  Interval observers for uncertain biological systems , 2000 .

[12]  Hassan Hammouri,et al.  Observer Design for Continuous-Discrete Time State Affine Systems up to Output Injection , 2004, Eur. J. Control.

[13]  F. Schweppe Recursive state estimation: Unknown but bounded errors and system inputs , 1967 .

[14]  W. Haddad,et al.  Nonnegative and Compartmental Dynamical Systems , 2010 .

[15]  Wilfrid Perruquetti,et al.  On interval observer design for time-invariant discrete-time systems , 2013, 2013 European Control Conference (ECC).

[16]  Luigi Chisci,et al.  Recursive state bounding by parallelotopes , 1996, Autom..

[17]  J. Koenderink Q… , 2014, Les noms officiels des communes de Wallonie, de Bruxelles-Capitale et de la communaute germanophone.

[18]  Olivier Bernard,et al.  Interval observers for linear time-invariant systems with disturbances , 2011, Autom..

[19]  A. Vande Wouwer,et al.  Continuous ‐ discrete interval observers for monitoring microalgae cultures , 2009, Biotechnology progress.

[20]  Frédéric Mazenc,et al.  Interval observers for discrete-time systems , 2012, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).

[21]  Christophe Combastel,et al.  A Stable Interval Observer for LTI Systems with No Multiple Poles , 2011 .

[22]  Olivier Bernard,et al.  Construction of ISS interval observers for triangular systems , 2012, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).

[23]  Olivier Bernard,et al.  Exponentially Stable Interval Observers for Linear Systems with Delay , 2012, SIAM J. Control. Optim..