The Application of Photosynthetic Materials and Architectures to Solar Cells

Publisher Summary This chapter focusses on the application of photosynthetic materials and architectures to solar cells. Photosynthetic materials and structures deserve investigation because of the promise of harnessing the high efficiency of photosynthesis. Device performance of initial demonstrations of solid-state solar cells with integrated photosynthetic proteins is limited by an inability to absorb enough incident light. The local environment of the solid state is drastically different to that of the aqueous solution, where proteins usually preside. Because the structural stability and hence, functionality of proteins hinge on local environment, it is necessary to inquire whether the harsh environment of solid matter is too destructive for proteins to withstand. Plants survive this damage through an energetically costly and complicated repair process of degradation, resynthesis, and replacement. Separation of the functions of light absorption and exciton dissociation constitutes a significant photosynthetic redesign, unaccompanied by the limitations of traditional organic PV. Finally, the excellent absorption characteristics of chlorosomes and charge-separation characteristics of RCs are tempting, the trade-off between performance and stability may dictate the type of devices that yield high performance and reliability.

[1]  T. Morosinotto,et al.  The Nature of a Chlorophyll Ligand in Lhca Proteins Determines the Far Red Fluorescence Emission Typical of Photosystem I* , 2003, Journal of Biological Chemistry.

[2]  J. Fraxedas Perspectives on Thin Molecular Organic Films , 2002 .

[3]  A. Alivisatos,et al.  Hybrid Nanorod-Polymer Solar Cells , 2002, Science.

[4]  Christos D. Dimitrakopoulos,et al.  Molecular beam deposited thin films of pentacene for organic field effect transistor applications , 1996 .

[5]  Peng Wang,et al.  A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte , 2003, Nature materials.

[6]  W. Barnes,et al.  Energy Transfer Across a Metal Film Mediated by Surface Plasmon Polaritons , 2004, Science.

[7]  A. Holzwarth,et al.  On the structure of bacteriochlorophyll molecular aggregates in the chlorosomes of green bacteria. A molecular modelling study , 1994, Photosynthesis Research.

[8]  Peidong Yang,et al.  Nanowire dye-sensitized solar cells , 2005, Nature materials.

[9]  Stephen R. Forrest,et al.  Efficient bulk heterojunction photovoltaic cells using small-molecular-weight organic thin films , 2003, Nature.

[10]  R. Silbey,et al.  Molecular Fluorescence and Energy Transfer Near Interfaces , 2007 .

[11]  Keiichi Yamamoto,et al.  Enhancement of Photoelectric Conversion Efficiency in Copper Phthalocyanine Solar Cell: White Light Excitation of Surface Plasmon Polaritons , 1995 .

[12]  G. Witte,et al.  Growth of aromatic molecules on solid substrates for applications in organic electronics , 2004 .

[13]  Stephen R. Forrest,et al.  Small molecular weight organic thin-film photodetectors and solar cells , 2003 .

[14]  W H Weber,et al.  Energy transfer from an excited dye molecule to the surface plasmons of an adjacent metal. , 1979, Optics letters.

[15]  M. Ascano,et al.  Conditions for Vigorous Growth on Sulfide and Reactor-Scale Cultivation Protocols for the Thermophilic Green Sulfur Bacterium Chlorobium tepidum , 1999, Applied and Environmental Microbiology.

[16]  Vladislav Cápek,et al.  Organic molecular crystals : interaction, localization, and transport phenomena , 1994 .

[17]  Shuguang Zhang,et al.  Molecular self-assembly of surfactant-like peptides to form nanotubes and nanovesicles , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[18]  Paul K. Hansma,et al.  Efficiency of light emission from surface plasmons , 1982 .

[19]  D. O. Hall,et al.  Photochemical conversion and storage of solar energy , 1977 .

[20]  S. Hayashi,et al.  Enhancement of photoelectric conversion efficiency by surface plasmon excitation : a test with an organic solar cell , 1991 .

[21]  Michael Grätzel,et al.  Solar energy conversion by dye-sensitized photovoltaic cells. , 2005, Inorganic chemistry.

[22]  J. Barber,et al.  Revealing the blueprint of photosynthesis , 1994, Nature.

[23]  V. Novoderezhkin,et al.  OLIGOMERIZATION OF LIGHT-HARVESTING PIGMENTS AS A STRUCTURAL FACTOR OPTIMIZING THE PHOTOSYNTHETIC ANTENNA FUNCTION. II. EXPERIMENTAL PROOF FOR OLIGOME RIC PIGMENT ORGANIZATION IN ANTENNAE OF GREEN BACTERIA , 1996 .

[24]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[25]  Charles E. Swenberg,et al.  Electronic Processes in Organic Crystals , 1982 .

[26]  R. Walker,et al.  Energy, Plants and Man , 1992 .

[27]  James P. Muir,et al.  Biomass Yield and Stand Characteristics of Switchgrass in South Central U.S. Environments , 2005 .

[28]  Alan Sussman,et al.  Space‐Charge‐Limited Currents in Copper Phthalocyanine Thin Films , 1967 .

[29]  S. Styring,et al.  Logistics in the life cycle of Photosystem II—lateral movement in the thylakoid membrane and activation of electron transfer , 2003 .

[30]  Toshihiko Baba,et al.  Japanese Journal of Applied Physics, Part 1: Regular Papers & Short Notes & Review Papers , 1995 .

[31]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[32]  William W. Parson,et al.  Light-Harvesting Antennas in Photosynthesis , 2003, Advances in Photosynthesis and Respiration.

[33]  H. Raether Surface Plasmons on Smooth and Rough Surfaces and on Gratings , 1988 .

[34]  Yang Yang,et al.  High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends , 2005 .

[35]  M. Baldo,et al.  Self-Assembling Peptide Detergents Stabilize Isolated Photosystem Ion a Dry Surface for an Extended Time , 2005, PLoS biology.

[36]  Stephen R. Forrest,et al.  Very-high-efficiency double-heterostructure copper phthalocyanine/C60 photovoltaic cells , 2001 .

[37]  W. Barnes,et al.  Fluorescence near interfaces: The role of photonic mode density , 1998 .

[38]  W. Barnes,et al.  Surface plasmon subwavelength optics , 2003, Nature.

[39]  C. Pidgeon,et al.  Chelating peptide-immobilized metal ion affinity chromatography. A new concept in affinity chromatography for recombinant proteins. , 1988, The Journal of biological chemistry.

[40]  Christoph J. Brabec,et al.  Tracing photoinduced electron transfer process in conjugated polymer/fullerene bulk heterojunctions in real time , 2001 .

[41]  N. McKeown Phthalocyanine Materials: Synthesis, Structure and Function , 1998 .

[42]  Eugenii Katz,et al.  Application of bifunctional reagents for immobilization of proteins on a carbon electrode surface: Oriented immobilization of photosynthetic reaction centers , 1994 .

[43]  Stephen R. Forrest,et al.  Effects of film morphology and gate dielectric surface preparation on the electrical characteristics of organic-vapor-phase-deposited pentacene thin-film transistors , 2002 .

[44]  James R. Sheats,et al.  Manufacturing and commercialization issues in organic electronics , 2004 .

[45]  J. Deisenhofer,et al.  Photophysics of photosynthesis. Structure and spectroscopy of reaction centers of purple bacteria , 1997 .

[46]  Roman Gr. Maev,et al.  Multiple reflection method for electromagnetic waves in layered dielectric structures , 2001 .

[47]  T. Nozawa,et al.  Structures of chlorosomes and aggregated BChlc inChlorobium tepidum from solid state high resolution CP/MAS13C NMR , 1994, Photosynthesis Research.

[48]  P. Würfel,et al.  Physics of solar cells , 2005 .

[49]  Martin A. Green,et al.  Solar cell efficiency tables (version 27) , 2006 .

[50]  Stephen R. Forrest,et al.  Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters , 2004 .

[51]  Enhanced Photocurrent in Organic Photoelectric Cells Based on Surface Plasmon Excitations , 1995 .

[52]  Robert Eugene Blankenship Molecular mechanisms of photosynthesis , 2002 .

[53]  Takashi Saito,et al.  Surface Plasmon-Enhanced Photocurrent in Organic Photoelectric Cells , 1997 .

[54]  Jason Cleveland,et al.  Energy dissipation in tapping-mode atomic force microscopy , 1998 .

[55]  V. Pizziconi,et al.  Characterization of Chlorobium tepidum chlorosomes: a calculation of bacteriochlorophyll c per chlorosome and oligomer modeling. , 2003, Biophysical journal.

[56]  Shuguang Zhang,et al.  Positively Charged Surfactant-like Peptides Self-assemble into Nanostructures , 2003 .

[57]  S. Hayashi,et al.  Enhancement of Photoelectric Conversion Efficiency in Copper Phthalocyanine Solar Cell by Surface Plasmon Excitation , 1993 .

[58]  Thomas Renger,et al.  Ultrafast excitation energy transfer dynamics in photosynthetic pigment–protein complexes , 2001 .

[59]  Michael D. McGehee,et al.  Photovoltaic cells made from conjugated polymers infiltrated into mesoporous titania , 2003 .

[60]  K. Shinbo,et al.  Enhancement of optical absorption and photocurrents in solar cells of merocyanine Langmuir–Blodgett films utilizing surface plasmon excitations , 2002 .

[61]  Ida Lee,et al.  Biomolecular Electronics: Vectorial Arrays of Photosynthetic Reaction Centers , 1997 .

[62]  Wonmuk Hwang,et al.  Self-assembly of Surfactant-like Peptides with Variable Glycine Tails to Form Nanotubes and Nanovesicles , 2002 .

[63]  Stephen R. Forrest,et al.  The Limits to Organic Photovoltaic Cell Efficiency , 2005 .

[64]  R. Tuma,et al.  Lamellar organization of pigments in chlorosomes, the light harvesting complexes of green photosynthetic bacteria. , 2004, Biophysical journal.

[65]  C. Brabec,et al.  Ultrafast charge transfer in conjugated polymer-fullerene composites , 2001 .

[66]  E. Arakawa,et al.  Photoacoustic study of surface plasmons in metals. , 1982, Applied optics.

[67]  Ching Wan Tang,et al.  Photovoltaic effects of metal–chlorophyll‐a–metal sandwich cells , 1975 .

[68]  Nathan S. Lewis,et al.  Basic Research Needs for Solar Energy Utilization: report of the Basic Energy Sciences Workshop on Solar Energy Utilization, April 18-21, 2005 , 2005 .

[69]  W. K. Purves Life: The Science of Biology , 1985 .

[70]  Nikolai Lebedev,et al.  Integration of Photosynthetic Protein Molecular Complexes in Solid-State Electronic Devices , 2004 .

[71]  D. Hornauer Light scattering experiments on silver films of different roughness using surface plasmon excitation , 1976 .

[72]  Stephen R. Forrest,et al.  Asymmetric tandem organic photovoltaic cells with hybrid planar-mixed molecular heterojunctions , 2004 .

[73]  M. Haraguchi,et al.  Surface plasmon polariton radiation from silver films on fluoride films and surface roughness parameters of those silver films , 1995 .

[74]  W. W. Parson,et al.  Pigment content and molar extinction coefficients of photochemical reaction centers from Rhodopseudomonas spheroides. , 1973, Biochimica et biophysica acta.

[75]  E. Sargent Infrared Quantum Dots , 2005 .

[76]  Ranganathan Shashidhar,et al.  Orientated binding of photosynthetic reaction centers on gold using Ni-NTA self-assembled monolayers. , 2004, Biosensors & bioelectronics.

[77]  G. T. Byrd,et al.  Physiological comparisons of switchgrass cultivars differing in transpiration efficiency , 2000 .

[78]  K. Schaffner,et al.  A refined model of the chlorosomal antennae of the green bacterium Chlorobium tepidum from proton chemical shift constraints obtained with high-field 2-D and 3-D MAS NMR dipolar correlation spectroscopy. , 2001, Biochemistry.

[79]  Antoine Kahn,et al.  Organic semiconductor heterointerfaces containing bathocuproine , 1999 .

[80]  M. Mimuro,et al.  SPECTRAL FORMS AND ORIENTATION OF BACTERIOCHLOROPHYLLS c AND α IN CHLOROSOMES OF THE GREEN PHOTOSYNTHETIC BACTERIUM Chloroflexus aurantiacus , 1993 .

[81]  Shuguang Zhang Fabrication of novel biomaterials through molecular self-assembly , 2003, Nature Biotechnology.