The Gaia -ESO Survey: Lithium enrichment histories of the Galactic thick and thin disc

Lithium abundance in most of the warm metal-poor main sequence stars shows a constarnt plateau (A(Li) ~ 2.2 dex) and then the upper envelope of the lithium vs. metallicity distribution increases as we approach solar metallicity. Meteorites, which carry information about the chemical composition of the interstellar medium (ISM) at the solar system formation time, show a lithium abundance A(Li) ~ 3.26 dex. This pattern reflects the Li enrichment history of the ISM during the Galaxy lifetime. After the initial Li production in big bang nucleosynthesis, the sources of the enrichment include asymptotic giant branch (AGB) stars, low-mass red giants, novae, type II supernovae, and Galactic cosmic rays. The total amount of enriched Li is sensitive to the relative contribution of these sources. Thus different Li enrichment histories are expected in the Galactic thick and thin disc. We investigate the main sequence stars observed with UVES in Gaia-ESO Survey iDR4 catalogue and find a Li-anticorrelation independent of [Fe/H], Teff, and log(g). Since in stellar evolution different α enhancements at the same metallicity do not lead to a measurable Li abundance change, the anticorrelation indicates that more Li is produced during the Galactic thin disc phase than during the Galactic thick disc phase. We also find a correlation between the abundance of Li and s-process elements Ba and Y, and they both decrease above the solar metallicity, which can be explained in the framework of the adopted Galactic chemical evolution models. (Less)

[1]  Daniel Foreman-Mackey,et al.  emcee: The MCMC Hammer , 2012, 1202.3665.

[2]  D. Lambert,et al.  Solar Twins and the Barium Puzzle , 2017, 1707.07051.

[3]  F. Matteucci The Chemical Evolution of Galaxies , 2012 .

[4]  B. Tinsley Stellar lifetimes and abundance ratios in chemical evolution , 1979 .

[5]  C. Sneden,et al.  A K giant with an unusually high abundance of lithium - HD 112127 , 1982 .

[6]  A. G. W. Cameron,et al.  Lithium and the s-process in red-giant stars , 1971 .

[7]  G. Guiglion,et al.  The AMBRE Project: Constraining the lithium evolution in the Milky Way , 2016, 1608.03411.

[8]  The metal-poor end of the Spite plateau - I. Stellar parameters, metallicities, and lithium abundances , 2010, 1003.4510.

[9]  J. Prieto,et al.  SUPER-CHANDRASEKHAR SNe Ia STRONGLY PREFER METAL-POOR ENVIRONMENTS , 2011, 1106.3071.

[10]  Kjell Eriksson,et al.  A grid of MARCS model atmospheres for late-type stars. I. Methods and general properties , 2008, 0805.0554.

[11]  F. Kappeler,et al.  GALACTIC CHEMICAL EVOLUTION: THE IMPACT OF THE 13C-POCKET STRUCTURE ON THE s-PROCESS DISTRIBUTION , 2017, 1701.01056.

[12]  G. Carraro,et al.  New insights on Ba overabundance in open clusters. Evidence for the intermediate neutron-capture process at play? , 2014, 1411.1422.

[13]  M. Tsantaki,et al.  Chemical abundances of 1111 FGK stars from the HARPS GTO planet search program. II. Cu, Zn, Sr, Y, Zr, Ba, Ce, Nd, and Eu , 2017, 1705.04349.

[14]  G. Herbig Lithium Abundances in F5-G8 Dwarfs. , 1965 .

[15]  Observatoire de la Côte d'Azur,et al.  Gaia Data Release 1. Summary of the astrometric, photometric, and survey properties , 2016, 1609.04172.

[16]  J. Richer,et al.  Models of metal poor stars with gravitational settling and radiative accelerations: I. evolution and abundance anomalies , 2002 .

[17]  Lennart Lindegren,et al.  The Tycho-Gaia astrometric solution. How to get 2.5 million parallaxes with less than one year of Gaia data , 2014, 1412.8770.

[18]  M. Asplund,et al.  Atomic and molecular data for optical stellar spectroscopy , 2015, 1506.06697.

[19]  Sofia Randich,et al.  The Gaia-ESO Large Public Spectroscopic Survey , 2013 .

[20]  Akira Arai,et al.  Explosive lithium production in the classical nova V339 Del (Nova Delphini 2013) , 2015, Nature.

[21]  E. Pancino,et al.  The gaia -ESO survey : Calibration strategy , 2016, 1610.06480.

[22]  M. Cassé,et al.  Galactic Cosmic Rays and the Evolution of Light Elements , 1998 .

[23]  F. Hoyle,et al.  Galactic Cosmic Ray Origin of Li, Be and B in Stars , 1970, Nature.

[24]  B. Pagel,et al.  Galactic chemical evolution of primary elements in the solar neighbourhood — II. Elements affected by the s-process , 1997 .

[25]  C. Pilachowski The abundance of lithium in old galactic clusters. I - NGC 7789 , 1986 .

[26]  L. Pasquini,et al.  EARLY OPTICAL SPECTRA OF NOVA V1369 CEN SHOW THE PRESENCE OF LITHIUM , 2015, 1506.08048.

[27]  Sergey E. Koposov,et al.  The Gaia-ESO Survey: revisiting the Li-rich giant problem , 2016, 1603.03038.

[28]  M. Skrutskie,et al.  The Two Micron All Sky Survey (2MASS) , 2006 .

[29]  A. Korn,et al.  Atomic diffusion and mixing in old stars , 2021, Astronomy & Astrophysics.

[30]  J. H. Roman,et al.  The Web as an API. , 2001 .

[31]  J. Isern,et al.  The role of gravitational supernovae in the Galactic evolution of the Li, Be and B isotopes , 1998, astro-ph/9803246.

[32]  Denmark,et al.  Atomic Diffusion and Mixing in Old Stars. I. Very Large Telescope FLAMES-UVES Observations of Stars in NGC 6397 , 2007, 0709.0639.

[33]  G. Boeshaar Chemical Evolution in Galaxies , 1977 .

[34]  A. Boothroyd,et al.  The Creation of Superrich Lithium Giants , 1992 .

[35]  P. Conti,et al.  Observations of the Lithium Content of Main-Sequence Stars in the Hyades. , 1965 .

[36]  School of Physics,et al.  TOPoS - II. On the bimodality of carbon abundance in CEMP stars Implications on the early chemical evolution of galaxies , 2015, 1504.05963.

[37]  A. Karakas,et al.  STELLAR YIELDS FROM METAL-RICH ASYMPTOTIC GIANT BRANCH MODELS , 2016, 1604.02178.

[38]  Francesca Primas,et al.  Submitted to ApJ Preprint typeset using L ATEX style emulateapj v. 6/22/04 LITHIUM ISOTOPIC ABUNDANCES IN METAL-POOR HALO , 2005 .

[39]  Mark Taylor,et al.  TOPCAT: Desktop Exploration of Tabular Data for Astronomy and Beyond , 2017, Informatics.

[40]  J. Truran,et al.  On Li-7 production in nova explosions , 1978 .

[41]  B. Kelly Some Aspects of Measurement Error in Linear Regression of Astronomical Data , 2007, 0705.2774.

[42]  T. Beers,et al.  First stars XI. Chemical composition of the extremely metal-poor dwarfs in the binary CS 22876-032 , 2007, 0712.2949.

[43]  U. T. Austin,et al.  An Extremely Lithium-rich Bright Red Giant in the Globular Cluster M3 , 1999, astro-ph/9904152.

[44]  European Southern Observatory,et al.  First stars VII - Lithium in extremely metal poor dwarfs , 2007 .

[45]  S. Randich,et al.  NEWS ON THE s PROCESS FROM YOUNG OPEN CLUSTERS , 2011, 1112.5290.

[46]  S. Cristallo,et al.  EVOLUTION, NUCLEOSYNTHESIS, AND YIELDS OF AGB STARS AT DIFFERENT METALLICITIES. III. INTERMEDIATE-MASS MODELS, REVISED LOW-MASS MODELS, AND THE pH-FRUITY INTERFACE , 2015, 1507.07338.

[47]  The chemical compositions of Galactic disc F and G dwarfs , 2002, astro-ph/0211551.

[48]  I. Iben Stellar Evolution. VII. The Evolution of a 2.25 M_{sun} Star from the Main Sequence to the Helium-Burning Phase , 1967 .

[49]  Sergey E. Koposov,et al.  The Gaia-ESO Survey: the Galactic thick to thin disc transition , 2014, 1403.7568.

[50]  Y. Pavlenko,et al.  First detection of a lithium rich carbon star in the Draco dwarf galaxy: Evidence for a young stellar population , 2004, astro-ph/0405305.

[51]  A. Boothroyd,et al.  Creation of 7Li and Destruction of 3He, 9Be, 10B, and 11B in Low-Mass Red Giants, Due to Deep Circulation , 1999 .

[52]  L. Deng,et al.  Lithium depletion in late-type dwarfs , 2009 .

[53]  Brno,et al.  Lithium-rich giants in the Galactic thick disk , 2011, 1103.1658.

[54]  Chao Liu,et al.  THE BINARITY OF MILKY WAY F,G,K STARS AS A FUNCTION OF EFFECTIVE TEMPERATURE AND METALLICITY , 2014, 1405.7105.

[55]  C. Prieto,et al.  LITHIUM ABUNDANCES IN NEARBY FGK DWARF AND SUBGIANT STARS: INTERNAL DESTRUCTION, GALACTIC CHEMICAL EVOLUTION, AND EXOPLANETS , 2012, 1207.0499.

[56]  M. Valle,et al.  Highly enriched 7Be in the ejecta of Nova Sagittarii 2015 No. 2 (V5668 Sgr) and the Galactic 7Li origin , 2016, 1609.07297.

[57]  R. Rebolo,et al.  Li Abundances in Late-Type Companions to Neutron Stars and Black Hole Candidates , 1994 .

[58]  M. Asplund,et al.  The Solar Chemical Composition , 2007 .

[59]  Luca Pasquini,et al.  FLAMES: a multi-object fiber facility for the VLT , 2000, Astronomical Telescopes and Instrumentation.

[60]  John N. Bahcall,et al.  Element Diffusion in the Solar Interior , 1992 .

[61]  S. Cristallo,et al.  ON THE NEED FOR THE LIGHT ELEMENTS PRIMARY PROCESS (LEPP) , 2015, 1501.00544.

[62]  E. Tolstoy,et al.  Stellar Chemical Signatures and Hierarchical Galaxy Formation , 2004, astro-ph/0406120.

[63]  F. Matteucci,et al.  The Chemical Evolution of the Milky Way: the Three Infall Model , 2013, 1309.1283.

[64]  Shigeyuki Sako,et al.  DATA COMPRESSION FOR THE TOMO-e GOZEN USING LOW-RANK MATRIX APPROXIMATION , 2016, 1612.03994.

[65]  C. Zahn Thermohaline mixing: a physical mechanism governing the photospheric composition of low-mass giants , 2007, astro-ph/0703302.

[66]  S. Lucatello,et al.  ON THE SERENDIPITOUS DISCOVERY OF A Li-RICH GIANT IN THE GLOBULAR CLUSTER NGC 362 , 2015, 1502.01341.

[67]  Sergio Ortolani,et al.  The Gaia-ESO Public Spectroscopic Survey , 2012 .

[68]  Piercarlo Bonifacio,et al.  The primordial lithium abundance , 1997 .

[69]  USA,et al.  alpha-, r-, and s-process element trends in the Galactic thin and thick disks , 2004, astro-ph/0412132.

[70]  V. Adibekyan,et al.  Chemical abundances of 1111 FGK stars from the HARPS GTO planet search program - Galactic stellar populations and planets , 2012, 1207.2388.

[71]  C. Babusiaux,et al.  The Gaia-ESO Survey: processing FLAMES-UVES spectra , 2014 .

[72]  A. Korn,et al.  ATOMIC DIFFUSION AND MIXING IN OLD STARS. III. ANALYSIS OF NGC 6397 STARS UNDER NEW CONSTRAINTS , 2012, 1204.5600.

[73]  E. Kirby,et al.  DISCOVERY OF SUPER-Li-RICH RED GIANTS IN DWARF SPHEROIDAL GALAXIES , 2012, 1205.1057.

[74]  M. Asplund,et al.  Departures from LTE for neutral Li in late-type stars , 2009, 0906.0899.

[75]  J. Uzan,et al.  Standard big bang nucleosynthesis and primordial CNO abundances after Planck , 2014, 1403.6694.

[76]  J. Lawler,et al.  Fe I oscillator strengths for the Gaia-ESO survey , 2014, 1404.5578.

[77]  Sergey E. Koposov,et al.  The Gaia-ESO Survey: Exploring the complex nature and origins of the Galactic bulge populations , 2017, 1704.03325.

[78]  D. O. Astronomy,et al.  Exploring the Milky Way stellar disk - A detailed elemental abundance study of 714 F and G dwarf stars in the solar neighbourhood , 2013, 1309.2631.

[79]  D. Nadyozhin,et al.  Production of the light elements due to neutrinos emitted by collapsing stellar cores , 1978 .

[80]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[81]  L. Casagrande,et al.  Observational evidence for a broken Li Spite plateau and mass-dependent Li depletion , 2010, 1005.2944.

[82]  C. Prieto,et al.  The Gaia-ESO Survey: the chemical structure of the Galactic discs from the first internal data release ?;?? , 2014, 1408.6687.

[83]  T. Beers,et al.  EXPLORING THE ORIGIN OF LITHIUM, CARBON, STRONTIUM, AND BARIUM WITH FOUR NEW ULTRA METAL-POOR STARS , 2014, 1405.5846.

[84]  Gang Zhao,et al.  Lithium abundances for 185 main-sequence stars - galactic evolution and stellar depletion of lithium , 2001 .

[85]  I. Iben Stellar Evolution.VI. Evolution from the Main Sequence to the Red-Giant Branch for Stars of Mass 1 M_{sun}, 1.25 M_{sun}, and 1.5 M_{sun} , 1967 .

[86]  A. Arai,et al.  THE 7Be ii RESONANCE LINES IN TWO CLASSICAL NOVAE V5668 SGR AND V2944 OPH , 2016, 1601.05168.

[87]  Bangalore,et al.  Lithium abundances of the local thin disc stars , 2004, astro-ph/0401259.

[88]  M. Tsantaki,et al.  Li abundances in F stars: planets, rotation, and Galactic evolution , 2014, 1412.4618.

[89]  B. E. Reddy,et al.  HD 77361: A NEW CASE OF SUPER Li-RICH K GIANT WITH ANOMALOUS LOW 12C/13C RATIO , 2009, 0908.2685.

[90]  F. Ferrini,et al.  Galactic Chemical Evolution of Heavy Elements: From Barium to Europium , 1999, astro-ph/9903451.

[91]  L. Mashonkina,et al.  Heavy element abundances in cool dwarf stars: An implication for the evolution of the Galaxy ? , 2001 .

[92]  F. Ochsenbein,et al.  The VizieR database of astronomical catalogues , 2000, astro-ph/0002122.

[93]  F. Ferrini,et al.  Galactic Chemical Evolution of Lithium: Interplay between Stellar Sources , 2001, astro-ph/0105558.

[94]  W. Aoki,et al.  EXAMINATION OF THE MASS-DEPENDENT Li DEPLETION HYPOTHESIS BY THE Li ABUNDANCES OF THE VERY METAL-POOR DOUBLE-LINED SPECTROSCOPIC BINARY G166–45 , 2012, 1204.3952.

[95]  M. Pinsonneault,et al.  ON LITHIUM-RICH RED GIANTS. I. ENGULFMENT OF SUBSTELLAR COMPANIONS , 2016, 1605.05332.

[96]  A. Bressan,et al.  Lithium evolution in metal-poor stars: from pre-main sequence to the Spite plateau , 2015, 1506.05993.

[97]  Yuehua Wu,et al.  STELLAR LOCI II. A MODEL-FREE ESTIMATE OF THE BINARY FRACTION FOR FIELD FGK STARS , 2014, 1412.1233.

[98]  Robert Mann,et al.  Astronomical Data Analysis Software and Systems XXI , 2012 .

[99]  Achim Weiss,et al.  Stellar Structure and Evolution , 1990 .

[100]  L. Girardi,et al.  parsec: stellar tracks and isochrones with the PAdova and TRieste Stellar Evolution Code , 2012, 1208.4498.

[101]  L. Pasquini,et al.  The Gaia-ESO Survey: the analysis of high-resolution UVES spectra of FGK-type stars , 2014, 1409.0568.

[102]  N. Prantzos Production and evolution of Li, Be, and B isotopes in the Galaxy , 2012, 1203.5662.

[103]  M. Lehnert,et al.  The age structure of stellar populations in the solar vicinity Clues of a two-phase formation history of the Milky Way disk , 2013, 1305.4663.

[104]  P. Cargile,et al.  The Influence of Atomic Diffusion on Stellar Ages and Chemical Tagging , 2017, 1704.03465.

[105]  GALACTIC EVOLUTION OF Sr, Y, AND Zr: A MULTIPLICITY OF NUCLEOSYNTHETIC PROCESSES , 2003, astro-ph/0310189.

[106]  C. Chiappini,et al.  Abundance Gradients and the Formation of the Milky Way , 2001, astro-ph/0102134.

[107]  Sergey E. Koposov,et al.  The Gaia-ESO Survey : the selection function of the Milky Way field stars , 2016, 1605.00515.

[108]  Shuang Gao,et al.  The binarity of Galactic dwarf stars along with effective temperature and metallicity , 2017, 1703.10305.

[109]  J. Greenstein,et al.  The Abundance of Lithium in T Tauri Stars and Related Objects. , 1960 .

[110]  K. Cunha,et al.  LITHIUM-RICH GIANTS IN GLOBULAR CLUSTERS , 2016, 1601.01315.