Resting state network topology of the ferret brain

[1]  S. Tobimatsu,et al.  Efficiency of a "small-world" brain network depends on consciousness level: a resting-state FMRI study. , 2014, Cerebral cortex.

[2]  Stephen D. Van Hooser,et al.  Experience with moving visual stimuli drives the early development of cortical direction selectivity , 2008, Nature.

[3]  M. Gabriel,et al.  Neurobiology of Cingulate Cortex and Limbic Thalamus , 1993 .

[4]  D. Schacter,et al.  The Brain's Default Network , 2008, Annals of the New York Academy of Sciences.

[5]  M. Sigman,et al.  Signature of consciousness in the dynamics of resting-state brain activity , 2015, Proceedings of the National Academy of Sciences.

[6]  R. Buckner,et al.  Efficacy of Transcranial Magnetic Stimulation Targets for Depression Is Related to Intrinsic Functional Connectivity with the Subgenual Cingulate , 2012, Biological Psychiatry.

[7]  H. R. Clemo,et al.  Laminar and connectional organization of a multisensory cortex , 2013, The Journal of comparative neurology.

[8]  Davis Bennett,et al.  Anesthesia differentially modulates spontaneous network dynamics by cortical area and layer. , 2013, Journal of neurophysiology.

[9]  S. Rombouts,et al.  Consistent resting-state networks across healthy subjects , 2006, Proceedings of the National Academy of Sciences.

[10]  Giorgio M Innocenti,et al.  Areal organization of the posterior parietal cortex of the ferret (Mustela putorius). , 2002, Cerebral cortex.

[11]  R. Dykes,et al.  Electrophysiological examination of the representation of the face in the suprasylvian gyrus of the ferret: a correlative study with cytoarchitecture. , 1993, Somatosensory & motor research.

[12]  Jelliffe Vergleichende Lokalisationslehre der Grosshirnrinde , 1910 .

[13]  Shella D. Keilholz,et al.  Considerations for resting state functional MRI and functional connectivity studies in rodents , 2015, Front. Neurosci..

[14]  Brian L Allman,et al.  Single‐unit analysis of somatosensory processing in the core auditory cortex of hearing ferrets , 2015, The European journal of neuroscience.

[15]  T. Duong,et al.  Quantitative Retinal and Choroidal Blood Flow During Light, Dark Adaptation and Flicker Light Stimulation in Rats Using Fluorescent Microspheres , 2013, Current eye research.

[16]  T. Duong,et al.  Pharmacological MRI of the choroid and retina: Blood flow and BOLD responses during nitroprusside infusion , 2012, Magnetic resonance in medicine.

[17]  Matthias Kaschube,et al.  The development of cortical circuits for motion discrimination , 2014, Nature Neuroscience.

[18]  Abraham Z. Snyder,et al.  A default mode of brain function: A brief history of an evolving idea , 2007, NeuroImage.

[19]  Ravi S. Menon,et al.  Resting‐state networks show dynamic functional connectivity in awake humans and anesthetized macaques , 2013, Human brain mapping.

[20]  Italo Masiello,et al.  Architecture and callosal connections of visual areas 17, 18, 19 and 21 in the ferret (Mustela putorius). , 2002, Cerebral cortex.

[21]  Barbara G Shinn-Cunningham,et al.  Nothing Is Irrelevant in a Noisy World: Sensory Illusions Reveal Obligatory within-and across-Modality Integration , 2012, The Journal of Neuroscience.

[22]  E. Bullmore,et al.  A Resilient, Low-Frequency, Small-World Human Brain Functional Network with Highly Connected Association Cortical Hubs , 2006, The Journal of Neuroscience.

[23]  O. Sporns,et al.  Structural and Functional Aspects Relating to Cost and Benefit of Rich Club Organization in the Human Cerebral Cortex , 2013, Cerebral cortex.

[24]  Justin L. Vincent,et al.  Intrinsic functional architecture in the anaesthetized monkey brain , 2007, Nature.

[25]  Brian D. Mills,et al.  Bridging the Gap between the Human and Macaque Connectome: A Quantitative Comparison of Global Interspecies Structure-Function Relationships and Network Topology , 2014, The Journal of Neuroscience.

[26]  S. Juliano,et al.  Organization of the forepaw representation in ferret somatosensory cortex. , 1998, Somatosensory & motor research.

[27]  O. Sporns,et al.  The economy of brain network organization , 2012, Nature Reviews Neuroscience.

[28]  R. McCrea,et al.  Coding of self-motion signals in ventro-posterior thalamus neurons in the alert squirrel monkey , 2008, Experimental Brain Research.

[29]  K. Rockland Anatomical organization of primary visual cortex (area 17) in the ferret , 1985, The Journal of comparative neurology.

[30]  Stephen M. Smith,et al.  Investigations into resting-state connectivity using independent component analysis , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[31]  Francesco Sforazzini,et al.  Distributed BOLD and CBV-weighted resting-state networks in the mouse brain , 2014, NeuroImage.

[32]  L. Vanderschuren,et al.  Evaluating the rewarding nature of social interactions in laboratory animals , 2011, Developmental Cognitive Neuroscience.

[33]  S. Rombouts,et al.  Loss of ‘Small-World’ Networks in Alzheimer's Disease: Graph Analysis of fMRI Resting-State Functional Connectivity , 2010, PloS one.

[34]  Steven Laureys,et al.  Dynamic Change of Global and Local Information Processing in Propofol-Induced Loss and Recovery of Consciousness , 2013, PLoS Comput. Biol..

[35]  Aileen Schroeter,et al.  Optimization of anesthesia protocol for resting-state fMRI in mice based on differential effects of anesthetics on functional connectivity patterns , 2014, NeuroImage.

[36]  I. Nelken,et al.  Functional organization of ferret auditory cortex. , 2005, Cerebral cortex.

[37]  A. V. Apkarian,et al.  Resting-sate functional reorganization of the rat limbic system following neuropathic injury , 2014, Scientific Reports.

[38]  G L Shulman,et al.  INAUGURAL ARTICLE by a Recently Elected Academy Member:A default mode of brain function , 2001 .

[39]  F. Fröhlich,et al.  Dorso-Lateral Frontal Cortex of the Ferret Encodes Perceptual Difficulty during Visual Discrimination , 2016, Scientific Reports.

[40]  Stephen M Smith,et al.  Correspondence of the brain's functional architecture during activation and rest , 2009, Proceedings of the National Academy of Sciences.

[41]  Valerio Zerbi,et al.  Mapping the mouse brain with rs-fMRI: An optimized pipeline for functional network identification , 2015, NeuroImage.

[42]  J. B. Levitt,et al.  Feedback connections to ferret striate cortex: Direct evidence for visuotopic convergence of feedback inputs , 2005, The Journal of comparative neurology.

[43]  B. Biswal,et al.  Functional connectivity in the motor cortex of resting human brain using echo‐planar mri , 1995, Magnetic resonance in medicine.

[44]  Yong Liu,et al.  Disrupted Small-World Brain Networks in Moderate Alzheimer's Disease: A Resting-State fMRI Study , 2012, PloS one.

[45]  Yong He,et al.  Disrupted small-world networks in schizophrenia. , 2008, Brain : a journal of neurology.

[46]  Brian D. Mills,et al.  Large-scale topology and the default mode network in the mouse connectome , 2014, Proceedings of the National Academy of Sciences.

[47]  A. J. King,et al.  Cortico‐cortical connectivity within ferret auditory cortex , 2015, The Journal of comparative neurology.

[48]  S. M. Hadi Hosseini,et al.  Comparing connectivity pattern and small-world organization between structural correlation and resting-state networks in healthy adults , 2013, NeuroImage.

[49]  Ji Hyun Ko,et al.  Metabolic resting-state brain networks in health and disease , 2015, Proceedings of the National Academy of Sciences.

[50]  Dewen Hu,et al.  Evidence of a dissociation pattern in default mode subnetwork functional connectivity in schizophrenia , 2015, Scientific Reports.

[51]  J. Kreiner,et al.  The myeloarchitectonics of the frontal cortex of the dog , 1961, The Journal of comparative neurology.

[52]  M. Kringelbach The human orbitofrontal cortex: linking reward to hedonic experience , 2005, Nature Reviews Neuroscience.

[53]  M. Gabriel,et al.  Neurobiology of Cingulate Cortex and Limbic Thalamus: A Comprehensive Handbook , 1993 .

[54]  S. David,et al.  Adaptive, behaviorally-gated, persistent encoding of task-relevant auditory information in ferret frontal cortex , 2010, Nature Neuroscience.

[55]  Kristin K Sellers,et al.  Awake vs. anesthetized: layer-specific sensory processing in visual cortex and functional connectivity between cortical areas. , 2015, Journal of neurophysiology.

[56]  Hong Wang,et al.  CRISPR/Cas9-mediated genome engineering of the ferret , 2015, Cell Research.

[57]  Craig K. Jones,et al.  Functional networks in the anesthetized rat brain revealed by independent component analysis of resting-state FMRI. , 2010, Journal of neurophysiology.

[58]  P. Stanzione,et al.  Theta Burst Stimulation Modulates Cerebellar-Cortical Connectivity in Patients with Progressive Supranuclear Palsy , 2014, Brain Stimulation.

[59]  H. R. Clemo,et al.  Somatosensory and multisensory properties of the medial bank of the ferret rostral suprasylvian sulcus , 2009, Experimental Brain Research.

[60]  M. Meredith,et al.  An examination of somatosensory area SIII in ferret cortex , 2011, Somatosensory & motor research.

[61]  T. Poole An analysis of social play in polecats (Mustelidae) with comments on the form and evolutionary history of the open mouth play face , 1978, Animal Behaviour.

[62]  Brian L Allman,et al.  Multisensory and unisensory neurons in ferret parietal cortex exhibit distinct functional properties , 2013, The European journal of neuroscience.

[63]  Stephen M. Smith,et al.  Probabilistic independent component analysis for functional magnetic resonance imaging , 2004, IEEE Transactions on Medical Imaging.

[64]  Raag D. Airan,et al.  Natural Neural Projection Dynamics Underlying Social Behavior , 2014, Cell.

[65]  Olaf Sporns,et al.  Complex network measures of brain connectivity: Uses and interpretations , 2010, NeuroImage.

[66]  M. Raichle,et al.  Rat brains also have a default mode network , 2012, Proceedings of the National Academy of Sciences.

[67]  P. Manger,et al.  Immunohistochemical parcellation of the ferret (Mustela putorius) visual cortex reveals substantial homology with the cat (Felis catus) , 2010, The Journal of comparative neurology.

[68]  M. Greicius,et al.  Resting-state functional connectivity reflects structural connectivity in the default mode network. , 2009, Cerebral cortex.

[69]  Huriye Atilgan,et al.  The role of spectral cues in timbre discrimination by ferrets and humans. , 2015, The Journal of the Acoustical Society of America.

[70]  Andrew K Knutsen,et al.  Characterization of Brain Development in the Ferret via MRI , 2009, Pediatric Research.

[71]  J. Rilling,et al.  The default mode network in chimpanzees (Pan troglodytes) is similar to that of humans. , 2015, Cerebral cortex.

[72]  Z. Henderson Cholinergic innervation of ferret visual system , 1987, Neuroscience.

[73]  Xiao Liu,et al.  Dynamic resting state functional connectivity in awake and anesthetized rodents , 2015, NeuroImage.

[74]  M. Raichle The brain's default mode network. , 2015, Annual review of neuroscience.

[75]  M. Mintun,et al.  Resting-state functional MRI in depression unmasks increased connectivity between networks via the dorsal nexus , 2010, Proceedings of the National Academy of Sciences.

[76]  Thomas S. Denney,et al.  Anterior–posterior dissociation of the default mode network in dogs , 2015, Brain Structure and Function.

[77]  Giorgio M Innocenti,et al.  Visual areas in the lateral temporal cortex of the ferret (Mustela putorius). , 2004, Cerebral cortex.

[78]  Richard W. Murrow,et al.  Structural and functional connectivity between the lateral posterior–pulvinar complex and primary visual cortex in the ferret , 2016, The European journal of neuroscience.

[79]  R. Spreafico,et al.  SII-projecting neurons in the rat thalamus: a single- and double-retrograde-tracing study. , 1987, Somatosensory research.

[80]  Shen Wang,et al.  Optogenetic spatial and temporal control of cortical circuits on a columnar scale. , 2016, Journal of neurophysiology.

[81]  R. Buckner,et al.  Functional-Anatomic Fractionation of the Brain's Default Network , 2010, Neuron.

[82]  S. David,et al.  Emergent Selectivity for Task-Relevant Stimuli in Higher-Order Auditory Cortex , 2014, Neuron.

[83]  K. Sawada,et al.  Development of cerebral sulci and gyri in ferrets (Mustela putorius) , 2012, Congenital anomalies.

[84]  H. Groenewegen,et al.  Efferent connections of the prelimbic (area 32) and the infralimbic (area 25) cortices: An anterograde tracing study in the cat , 1985, The Journal of comparative neurology.

[85]  Laurel M Harris Ferret Wellness Management and Environmental Enrichment , 2015, Veterinary Clinics of North America: Exotic Animal Practice.

[86]  David P. Friedman,et al.  Thalamic connectivity of the second somatosensory area and neighboring somatosensory fields of the lateral sulcus of the macaque , 1986, The Journal of comparative neurology.

[87]  R. Dykes,et al.  Cytoarchitecture of the ferret suprasylvian gyrus correlated with areas containing multiunit responses elicited by stimulation of the face. , 1993, Somatosensory & motor research.

[88]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[89]  M. Meredith,et al.  Multiple sensory afferents to ferret pseudosylvian sulcal cortex , 2004, Neuroreport.

[90]  C R Olson,et al.  Topographic organization of cortical and subcortical projections to posterior cingulate cortex in the cat: Evidence for somatic, ocular, and complex subregions , 1992, The Journal of comparative neurology.

[91]  David A McCormick,et al.  Circuit-based localization of ferret prefrontal cortex. , 2010, Cerebral cortex.

[92]  N. Woodward,et al.  Resting-state networks in schizophrenia. , 2012, Current topics in medicinal chemistry.

[93]  Leonard E. White,et al.  Mapping multiple features in the population response of visual cortex , 2003, Nature.

[94]  Timothy A Keller,et al.  The nature of brain dysfunction in autism: functional brain imaging studies , 2010, Current opinion in neurology.

[95]  A. J. King,et al.  The ferret auditory cortex: descending projections to the inferior colliculus. , 2006, Cerebral cortex.

[96]  Andreas K Engel,et al.  Location, architecture, and retinotopy of the anteromedial lateral suprasylvian visual area (AMLS) of the ferret (Mustela putorius) , 2008, Visual Neuroscience.

[97]  M. Law,et al.  Organization of primary visual cortex (area 17) in the ferret , 1988, The Journal of comparative neurology.

[98]  Xiaoqi Huang,et al.  Disrupted Brain Connectivity Networks in Drug-Naive, First-Episode Major Depressive Disorder , 2011, Biological Psychiatry.

[99]  M. V. D. Heuvel,et al.  Exploring the brain network: A review on resting-state fMRI functional connectivity , 2010, European Neuropsychopharmacology.

[100]  S. Juul,et al.  Is the ferret a suitable species for studying perinatal brain injury? , 2015, International Journal of Developmental Neuroscience.

[101]  Jürgen Hennig,et al.  Fine-grained mapping of mouse brain functional connectivity with resting-state fMRI , 2014, NeuroImage.

[102]  Alessandro Gozzi,et al.  Large-scale functional connectivity networks in the rodent brain , 2016, NeuroImage.

[103]  H. Gu,et al.  Large-Scale Brain Networks in the Awake, Truly Resting Marmoset Monkey , 2013, The Journal of Neuroscience.

[104]  Jennifer K. Bizley,et al.  Visual influences on ferret auditory cortex , 2009, Hearing Research.

[105]  Robert Desimone,et al.  Pulvinar-Cortex Interactions in Vision and Attention , 2016, Neuron.

[106]  M. Greicius,et al.  Default-mode network activity distinguishes Alzheimer's disease from healthy aging: Evidence from functional MRI , 2004, Proc. Natl. Acad. Sci. USA.