Design and Fabrication of GaN High Power Rectifiers

The purpose of this chapter is to study design and fabrication of gallium nitride (GaN) high power rectifiers. GaN power Schottky diodes have many advantages over more conventional Si rectifiers, achieving a maximum electric field breakdown strength over 10 times larger and on-state resistance approximately 400 times lower at a given voltage. These characteristics have made GaN devices attractive for hybrid electric vehicles and power conditioning in large industrial motors. In particular, Schottky rectifiers are attractive because of their fast switching speed that is important for improving the efficiency of inductive motor controllers and power supplies. Both GaN and SiC power Schottky diodes have demonstrated shorter turn-on delays than comparable Si devices. There is an interest in the development of ultra high power inverter modules based on GaN and other wide-bandgap semiconductors. These would have application in pulsed power for avionics and electric ships, in solid-state drivers for heavy electric motors and in advanced power management and control electronics.

[1]  J. Palmour,et al.  Steady-state and transient forward current-voltage characteristics of 4H-silicon carbide 5.5 kV diodes at high and superhigh current densities , 1999 .

[2]  W. Fulop,et al.  Calculation of avalanche breakdown voltages of silicon p-n junctions , 1967 .

[3]  K. Brennan,et al.  Monte Carlo calculation of electron initiated impact ionization in bulk zinc-blende and wurtzite GaN , 1997 .

[4]  K. Brennan,et al.  Theory of hole initiated impact ionization in bulk zincblende and wurtzite GaN , 1997 .

[5]  Stephen J. Pearton,et al.  Fabrication and performance of GaN electronic devices , 2000 .

[6]  Gheorghe Brezeanu,et al.  Medici Simulation of 6H-SiC Oxide Ramp Profile Schottky Structure , 1997 .

[7]  Tangali S. Sudarshan,et al.  Design rules for field plate edge termination in SiC Schottky diodes , 2001 .

[8]  C. Hu,et al.  A simple method for optimization of 6H-SiC punch-through junctions used in both unipolar and bipolar power devices , 2002 .

[9]  Surface and bulk leakage currents in high breakdown GaN rectifiers , 2000 .

[10]  Andrew J. Steckl,et al.  High-voltage Ni- and Pt-SiC Schottky diodes utilizing metal field plate termination , 1999 .

[11]  Joan M. Redwing,et al.  Lateral AlxGa1−xN power rectifiers with 9.7 kV reverse breakdown voltage , 2001 .

[12]  F. Ren,et al.  Electrical Characterization of GaN Metal Oxide Semiconductor Diodes Using MgO as the Gate Oxide , 2002 .

[13]  Piotr Perlin,et al.  Temperature dependence of the energy gap in GaN bulk single crystals and epitaxial layer , 1994 .

[14]  K. Shenai,et al.  Performance evaluation of high-power wide band-gap semiconductor rectifiers , 1999 .

[15]  Russell D. Dupuis,et al.  High-voltage mesa-structure GaN Schottky rectifiers processed by dry and wet etching , 2000 .

[16]  S. S. Park,et al.  Breakdown voltage and reverse recovery characteristics of free-standing GaN Schottky rectifiers , 2002 .

[17]  H. Mitlehner,et al.  SiC devices: physics and numerical simulation , 1994 .

[18]  Schottky rectifiers fabricated on free-standing GaN substrates , 2001 .

[19]  N. B. Smirnov,et al.  Al composition dependence of breakdown voltage in AlxGa1−xN Schottky rectifiers , 2000 .

[20]  Simulation of the electrical characteristics of high-voltage mesa and planar GaN Schottky and p-i-n rectifiers , 2001 .

[21]  Joan M. Redwing,et al.  High voltage (450 V) GaN Schottky rectifiers , 1999 .

[22]  Rishabh Mehandru,et al.  Influence of MgO and Sc2O3 passivation on AlGaN/GaN high-electron-mobility transistors , 2002 .

[23]  H. Morkoç,et al.  Comprehensive characterization of hydride VPE grown GaN layers and templates , 2001 .

[24]  Philip G. Neudeck,et al.  2000 V 6H-SIC P-N JUNCTION DIODES GROWN BY CHEMICAL VAPOR DEPOSITION , 1994 .

[25]  T. Kimoto,et al.  Excellent reverse blocking characteristics of high-voltage 4H-SiC Schottky rectifiers with boron-implanted edge termination , 1996, IEEE Electron Device Letters.

[26]  S. Park,et al.  Free-Standing GaN Substrates by Hydride Vapor Phase Epitaxy , 2000 .

[27]  M. Zafrani,et al.  Static and dynamic characterization of large-area high-current-density SiC Schottky diodes , 1998, 56th Annual Device Research Conference Digest (Cat. No.98TH8373).

[28]  S. S. Park,et al.  1.6 A GaN Schottky rectifiers on bulk GaN substrates , 2002 .