Disentangling micro from mesostructure by diffusion MRI: A Bayesian approach

ABSTRACT Diffusion‐sensitized magnetic resonance imaging probes the cellular structure of the human brain, but the primary microstructural information gets lost in averaging over higher‐level, mesoscopic tissue organization such as different orientations of neuronal fibers. While such averaging is inevitable due to the limited imaging resolution, we propose a method for disentangling the microscopic cell properties from the effects of mesoscopic structure. We further avoid the classical fitting paradigm and use supervised machine learning in terms of a Bayesian estimator to estimate the microstructural properties. The method finds detectable parameters of a given microstructural model and calculates them within seconds, which makes it suitable for a broad range of neuroscientific applications. HIGHLIGHTSDisentanglement of microstructural properties of neurites from their orientation distribution.Microstructure estimation from clinical feasible dMRI, including fast protocols (as few as 28 diffusion weighting directions).Computation time of seconds.In‐vivo results are consistent with existing anatomical knowledge.

[1]  Jean-Philippe Thiran,et al.  Accelerated Microstructure Imaging via Convex Optimization (AMICO) from diffusion MRI data , 2015, NeuroImage.

[2]  Alan Connelly,et al.  Robust determination of the fibre orientation distribution in diffusion MRI: Non-negativity constrained super-resolved spherical deconvolution , 2007, NeuroImage.

[3]  Alan Connelly,et al.  Track-density imaging (TDI): Super-resolution white matter imaging using whole-brain track-density mapping , 2010, NeuroImage.

[4]  Carlo Pierpaoli,et al.  Mean apparent propagator (MAP) MRI: A novel diffusion imaging method for mapping tissue microstructure , 2013, NeuroImage.

[5]  Godfrey L. Smith,et al.  Slowing of Electrical Activity in Ventricular Fibrillation is Not Associated with Increased Defibrillation Energies in the Isolated Rabbit Heart , 2011, Front. Physio..

[6]  Antonio Criminisi,et al.  Image Quality Transfer via Random Forest Regression: Applications in Diffusion MRI , 2014, MICCAI.

[7]  Paul Suetens,et al.  Global tractography of multi-shell diffusion-weighted imaging data using a multi-tissue model , 2015, NeuroImage.

[8]  Mark Jenkinson,et al.  The minimal preprocessing pipelines for the Human Connectome Project , 2013, NeuroImage.

[9]  Dhital Bibek,et al.  Isotropic Diffusion Weighting Provides Insight on Diffusion Compartments in Human Brain White Matter In vivo , 2016 .

[10]  Joseph A. Helpern,et al.  White matter characterization with diffusional kurtosis imaging , 2011, NeuroImage.

[11]  Dmitry S. Novikov,et al.  MesoFT: Unifying Diffusion Modelling and Fiber Tracking , 2014, MICCAI.

[12]  P. Basser,et al.  In vivo fiber tractography using DT‐MRI data , 2000, Magnetic resonance in medicine.

[13]  Mark F. Lythgoe,et al.  Compartment models of the diffusion MR signal in brain white matter: A taxonomy and comparison , 2012, NeuroImage.

[14]  Leif Østergaard,et al.  Modeling dendrite density from magnetic resonance diffusion measurements , 2007, NeuroImage.

[15]  P. Basser,et al.  Axcaliber: A method for measuring axon diameter distribution from diffusion MRI , 2008, Magnetic resonance in medicine.

[16]  Karl J. Friston,et al.  Statistical parametric mapping , 2013 .

[17]  Nathan Blow Neuroscience tools: brain insights , 2008, Nature Methods.

[18]  D. Le Bihan,et al.  A framework based on spin glass models for the inference of anatomical connectivity from diffusion‐weighted MR data – a technical review , 2002, NMR in biomedicine.

[19]  F. Kruggel,et al.  Quantitative mapping of the per‐axon diffusion coefficients in brain white matter , 2015, Magnetic resonance in medicine.

[20]  C. Sønderby,et al.  Orientationally invariant metrics of apparent compartment eccentricity from double pulsed field gradient diffusion experiments , 2013, NMR in biomedicine.

[21]  A. Anderson Measurement of fiber orientation distributions using high angular resolution diffusion imaging , 2005, Magnetic resonance in medicine.

[22]  P. Callaghan,et al.  Diffusion of water in the endosperm tissue of wheat grains as studied by pulsed field gradient nuclear magnetic resonance. , 1979, Biophysical journal.

[23]  P. V. van Zijl,et al.  Three‐dimensional tracking of axonal projections in the brain by magnetic resonance imaging , 1999, Annals of neurology.

[24]  F. Szczepankiewicz,et al.  Microanisotropy imaging: quantification of microscopic diffusion anisotropy and orientational order parameter by diffusion MRI with magic-angle spinning of the q-vector , 2014, Front. Physics.

[25]  Yaniv Assaf,et al.  Composite hindered and restricted model of diffusion (CHARMED) MR imaging of the human brain , 2005, NeuroImage.

[26]  Lawrence L. Wald,et al.  White matter compartment models for in vivo diffusion MRI at 300mT/m , 2015, NeuroImage.

[27]  Bibek Dhital,et al.  Gibbs‐ringing artifact removal based on local subvoxel‐shifts , 2015, Magnetic resonance in medicine.

[28]  Daniel C. Alexander,et al.  Multi-compartment microscopic diffusion imaging , 2016, NeuroImage.

[29]  Geoffrey J M Parker,et al.  A framework for a streamline‐based probabilistic index of connectivity (PICo) using a structural interpretation of MRI diffusion measurements , 2003, Journal of magnetic resonance imaging : JMRI.

[30]  Daniel Cremers,et al.  q-Space Deep Learning for Twelve-Fold Shorter and Model-Free Diffusion MRI Scans , 2015, MICCAI.

[31]  Andrea Bergmann,et al.  Statistical Parametric Mapping The Analysis Of Functional Brain Images , 2016 .

[32]  Kevin P. Murphy,et al.  Machine learning - a probabilistic perspective , 2012, Adaptive computation and machine learning series.

[33]  M. Abramowitz,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[34]  Tim B. Dyrby,et al.  Orientationally invariant indices of axon diameter and density from diffusion MRI , 2010, NeuroImage.

[35]  Daniel C. Alexander,et al.  Machine learning based compartment models with permeability for white matter microstructure imaging. , 2014, Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention.

[36]  Daniel C. Alexander,et al.  NODDI: Practical in vivo neurite orientation dispersion and density imaging of the human brain , 2012, NeuroImage.

[37]  J. Veraart,et al.  Degeneracy in model parameter estimation for multi‐compartmental diffusion in neuronal tissue , 2016, NMR in biomedicine.

[38]  D. O. Walsh,et al.  Adaptive reconstruction of phased array MR imagery , 2000, Magnetic resonance in medicine.

[39]  Jean-Philippe Thiran,et al.  COMMIT: Convex Optimization Modeling for Microstructure Informed Tractography , 2015, IEEE Transactions on Medical Imaging.

[40]  Essa Yacoub,et al.  The WU-Minn Human Connectome Project: An overview , 2013, NeuroImage.

[41]  Szymon Rusinkiewicz,et al.  Rotation Invariant Spherical Harmonic Representation of 3D Shape Descriptors , 2003, Symposium on Geometry Processing.