Generalized scaling theory and its application to a ¼ micrometer MOSFET design

In this paper we present a generalized scaling theory which allows for an independent scaling of the FET physical dimensions and applied voltages, while still maintaining constant the shape of the electric-field pattern. Thus two-dimensional effects are kept under control even though the intensity of the field is allowed to increase. The resulting design flexibility allows the design of FET's with quarter-micrometer channel length to be made, for either room temperature or liquid-nitrogen temperature. The physical limitations of the scaling theory are then investigated in detail, leading to the conclusion that the limiting FET performances are not reached at the 0.25-µm channel length. Further improvements are possible in the future, provided certain technology breakthroughs are achieved.

[1]  C. Sah,et al.  Effects of diffusion current on characteristics of metal-oxide (insulator)-semiconductor transistors☆ , 1966 .

[2]  F. Stern,et al.  Properties of Semiconductor Surface Inversion Layers in the Electric Quantum Limit , 1967 .

[3]  F. Fang,et al.  Transport Properties of Electrons in Inverted Silicon Surfaces , 1968 .

[4]  F. Fang,et al.  Hot Electron Effects and Saturation Velocities in Silicon Inversion Layers , 1970 .

[5]  C. Mead,et al.  Fundamental limitations in microelectronics—I. MOS technology , 1972 .

[6]  R. Dennard,et al.  Design of micron MOS switching devices , 1972 .

[7]  K. Steinhubl Design of Ion-Implanted MOSFET'S with Very Small Physical Dimensions , 1974 .

[8]  R. M. Swanson,et al.  Fundamental performance limits of MOS integrated circuits , 1975 .

[9]  E. Bassous,et al.  Improved Dielectric Reliability of SiO2 Films with Polycrystalline Silicon Electrodes , 1975 .

[10]  Hayashi Yutaka Static characteristics of extremely thin gate oxide m.o.s. transistors , 1975 .

[11]  R.W. Keyes,et al.  Physical limits in digital electronics , 1975, Proceedings of the IEEE.

[12]  V. L. Rideout,et al.  Very small MOSFET's for low-temperature operation , 1977, IEEE Transactions on Electron Devices.

[13]  A. M. Mazzone,et al.  Current transport in narrow-base transistors , 1977 .

[14]  Tak H. Ning,et al.  1 pm MOSFET VLSI Technology: Part lV— Hot-Electron Design Constraints , 1979 .

[15]  H. Sibbert,et al.  Model and performance of hot-electron MOS transistors for VLSI , 1979, IEEE Transactions on Electron Devices.

[16]  R.H. Dennard,et al.  1 µm MOSFET VLSI technology: Part II—Device designs and characteristics for high-performance logic applications , 1979, IEEE Transactions on Electron Devices.

[17]  R.H. Dennard,et al.  1 µm MOSFET VLSI technology: Part IV—Hot-electron design constraints , 1979, IEEE Transactions on Electron Devices.

[18]  R.H. Dennard,et al.  1 /spl mu/m MOSFET VLSI technology. II. Device designs and characteristics for high-performance logic applications , 1979, IEEE Journal of Solid-State Circuits.

[19]  Hwa-Nien Yu,et al.  1 µm MOSFET VLSI technology: Part I—An overview , 1979, IEEE Transactions on Electron Devices.

[20]  J. T. Clemens,et al.  Characterization of the electron mobility in the inverted <100> Si surface , 1979, 1979 International Electron Devices Meeting.

[21]  J. Meindl,et al.  Performance limits of E/D NMOS VLSI , 1980, 1980 IEEE International Solid-State Circuits Conference. Digest of Technical Papers.

[22]  W. Fichtner,et al.  Experimental and theoretical characterization of submicron MOSFETs , 1980, 1980 International Electron Devices Meeting.

[23]  R. W. Coen,et al.  Velocity of surface carriers in inversion layers on silicon , 1980 .

[24]  Scaling the micron barrier with x-rays , 1980, 1980 International Electron Devices Meeting.

[25]  P. Chatterjee,et al.  The impact of scaling laws on the choice of n-channel or p-channel for MOS VLSI , 1980, IEEE Electron Device Letters.

[26]  J. Plummer,et al.  Electron mobility in inversion and accumulation layers on thermally oxidized silicon surfaces , 1980 .

[27]  M. Rudan,et al.  Interpretation of C- V measurements for determining the doping profile in semiconductors , 1980 .

[28]  D. F. Nelson,et al.  Measurement of the high-field drift velocity of electrons in inversion layers on silicon , 1981, IEEE Electron Device Letters.

[29]  Youssef A. El-Mansy Limits to Scaling MOS Devices , 1981, 1981 Symposium on VLSI Technology. Digest of Technical Papers.

[30]  R. H. Dennard Technology challenges for ultrasmall silicon MOSFET's , 1981 .

[31]  K.N. Ratnakumar,et al.  New IGFET short-channel threshold voltage model , 1981, 1981 International Electron Devices Meeting.

[32]  H. Shichijo,et al.  A transmission line model for silicided diffusions: Impact on the performance of VLSI circuits , 1982, IEEE Transactions on Electron Devices.

[33]  H. Shichijo A re-examination of practical scalability limits of n-channel and p-channel MOS devices for VLSI , 1981, 1981 International Electron Devices Meeting.

[34]  E. M. Buturla,et al.  Finite-element analysis of semiconductor devices: the FIELDAY program , 1981 .

[35]  D. Antoniadis,et al.  Use of process and 2-D MOS simulation in the study of doping profile influence on S/D resistance in short channel MOSFET's , 1981, 1981 International Electron Devices Meeting.

[36]  G. Baccarani,et al.  Transconductance degradation in thin-Oxide MOSFET's , 1983, IEEE Transactions on Electron Devices.

[37]  Y. Ohno Short-channel MOSFET VT-VDScharacteristics model based on a point charge and its mirror images , 1982, IEEE Transactions on Electron Devices.

[38]  B. L. Crowder,et al.  Electrical Properties of Al/Ti Contact Metallurgy for VLSI Application , 1982 .

[39]  A transmission line model for silicided diffusions: Impact on the performance of VLSI circuits , 1982, IEEE Transactions on Electron Devices.

[40]  MOS Device and Technology Constraints in VLSI , 1982, IEEE Journal of Solid-State Circuits.

[41]  Y. El-Mansy MOS Device and technology constraints in VLSI , 1982, IEEE Transactions on Electron Devices.

[42]  C. G. Sodini,et al.  Charge accumulation and mobility in thin dielectric MOS transistors , 1982 .

[43]  G. Baccarani,et al.  Spreading resistance in submicron MOSFET's , 1983, IEEE Electron Device Letters.