METHODS FOR STUDYING NODULE DEVELOPMENT AND FUNCTION

[1]  Steven E. Ruzin,et al.  Plant Microtechnique and Microscopy , 1999 .

[2]  M. Hayashi,et al.  crinkle, a Novel Symbiotic Mutant That Affects the Infection Thread Growth and Alters the Root Hair, Trichome, and Seed Development in Lotus japonicus 1 , 2003, Plant Physiology.

[3]  M. Udvardi,et al.  Lotus japonicus LjKUP is induced late during nodule development and encodes a potassium transporter of the plasma membrane. , 2004, Molecular plant-microbe interactions : MPMI.

[4]  W. Broughton,et al.  Control of leghaemoglobin synthesis in snake beans. , 1971, The Biochemical journal.

[5]  M. Ohmori,et al.  The novel symbiotic phenotype of enhanced-nodulating mutant of Lotus japonicus: astray mutant is an early nodulating mutant with wider nodulation zone. , 2002, Plant & cell physiology.

[6]  C. Vance,et al.  Synthesis of Nodulins and Nodule-Enhanced Polypeptides by Plant Gene-Controlled Ineffective Alfalfa Nodules , 1991 .

[7]  N. Suganuma,et al.  Enhanced production of ethylene by soybean roots after inoculation with Bradyrhizobium japonicum , 1995 .

[8]  Leif Schauser,et al.  A plant regulator controlling development of symbiotic root nodules , 1999, Nature.

[9]  J. Thomas-Oates,et al.  Structural identification of the iipo‐chitin oligosaccharide nodulation signals of Rhizobium loti , 1995, Molecular microbiology.

[10]  S. Tabata,et al.  Shoot control of root development and nodulation is mediated by a receptor-like kinase , 2002, Nature.

[11]  J. Stougaard,et al.  Lotus japonicus, an autogamous, diploid legume species for classical and molecular genetics , 1992 .

[12]  H. Kouchi,et al.  Analysis of ENOD40 expression in alb1, a symbiotic mutant of Lotus japonicus that forms empty nodules with incompletely developed nodule vascular bundles , 2000, Molecular Genetics and Genomics.

[13]  Mark Stitt,et al.  Real-time RT-PCR profiling of over 1400 Arabidopsis transcription factors: unprecedented sensitivity reveals novel root- and shoot-specific genes. , 2004, The Plant journal : for cell and molecular biology.

[14]  F. Dazzo,et al.  Nodule Organogenesis and Symbiotic Mutants of the Model Legume Lotus japonicus , 1998 .

[15]  M. Olsthoorn,et al.  Novel branched nod factor structure results from alpha-(1-->3) fucosyl transferase activity: the major lipo-chitin oligosaccharides from Mesorhizobium loti strain NZP2213 bear an alpha-(1-->3) fucosyl substituent on a nonterminal backbone residue. , 1998, Biochemistry.

[16]  I. Tikhonovich,et al.  Effect of mutations in Pisum sativum L. genes blocking different stages of nodule development on the expression of late symbiotic genes in Rhizobium leguminosarum bv. viciae. , 2001, Molecular plant-microbe interactions : MPMI.

[17]  H. Kouchi,et al.  Expression of genes encoding late nodulins characterized by a putative signal peptide and conserved cysteine residues is reduced in ineffective pea nodules. , 2002, Molecular plant-microbe interactions : MPMI.

[18]  R. Hardy,et al.  The acetylene-ethylene assay for n(2) fixation: laboratory and field evaluation. , 1968, Plant physiology.

[19]  S. Long,et al.  Rhizobium-lnduced calcium spiking in Lotus japonicus. , 2003, Molecular plant-microbe interactions : MPMI.

[20]  K. Szczyglowski,et al.  Symbiosis, Inventiveness by Recruitment?1 , 2003, Plant Physiology.

[21]  H. Kouchi,et al.  Expression of nodulin genes in plant-determined ineffective nodules of pea , 1995, Plant Molecular Biology.

[22]  S. Tabata,et al.  A receptor kinase gene of the LysM type is involved in legumeperception of rhizobial signals , 2003, Nature.

[23]  H. Kouchi,et al.  Responses of a model legume Lotus japonicus to lipochitin oligosaccharide nodulation factors purified from Mesorhizobium loti JRL501. , 2001, Molecular plant-microbe interactions : MPMI.

[24]  A. J. Márquez Lotus japonicus handbook , 2005 .

[25]  J. Vessey Measurement of nitrogenase activity in legume root nodules: In defense of the acetylene reduction assay , 2004, Plant and Soil.

[26]  D. Purdom,et al.  Morphological and Molecular Characteristics of Host-Conditioned Ineffective Root Nodules in Cowpea , 1995, Plant physiology.

[27]  T. Bisseling,et al.  The Sequence of Appearance of Leghaemoglobin and Nitrogenase Components I and II in Root Nodules of Pisum sativum , 1980 .

[28]  S. Tabata,et al.  Plant recognition of symbiotic bacteria requires two LysM receptor-like kinases , 2003, Nature.

[29]  I. Tikhonovich,et al.  Anatomy, physiology and biochemistry of root nodules of Sprint-2 Fix−, a symbiotically defective mutant of pea (Pisum sativum L.) , 1995 .

[30]  M. Ohmori,et al.  HAR1 mediates systemic regulation of symbiotic organ development , 2002, Nature.

[31]  H. Spaink,et al.  Cell biological changes of outer cortical root cells in early determinate nodulation. , 2001, Molecular plant-microbe interactions : MPMI.

[32]  B. Trevaskis,et al.  Novel aspects of symbiotic nitrogen fixation uncovered by transcript profiling with cDNA arrays. , 2002, Molecular plant-microbe interactions : MPMI.

[33]  H. Kouchi,et al.  Lotus japonicus forms early senescent root nodules with Rhizobium etli. , 2001, Molecular plant-microbe interactions : MPMI.

[34]  H. Towbin,et al.  Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[35]  P. Gerrits,et al.  A new, less toxic polymerization system for the embedding of soft tissues in glycol methacrylate and subsequent preparing of serial sections , 1983, Journal of microscopy.

[36]  G. Jürgens,et al.  The role of the monopteros gene in organising the basal body region of the Arabidopsis embryo , 1993 .

[37]  P. Gresshoff,et al.  Short root mutant of Lotus japonicus with a dramatically altered symbiotic phenotype. , 2000, The Plant journal : for cell and molecular biology.

[38]  S. Akao,et al.  The Lotus japonicus Sen1 gene controls rhizobial differentiation into nitrogen-fixing bacteroids in nodules , 2003, Molecular Genetics and Genomics.

[39]  Y. Nakamura,et al.  Complete genome structure of the nitrogen-fixing symbiotic bacterium Mesorhizobium loti. , 2000, DNA research : an international journal for rapid publication of reports on genes and genomes.

[40]  H. Kouchi,et al.  Two types of pea leghemoglobin genes showing different O2-binding affinities and distinct patterns of spatial expression in nodules. , 2001, Plant physiology.