The COBE Diffuse Infrared Background Experiment Search for the Cosmic Infrared Background. IV. Cosmological Implications

A direct measurement of the extragalactic background light (EBL) can provide important constraints on the integrated cosmological history of star formation, metal and dust production, and the conversion of starlight into infrared emission by dust. In this paper we examine the cosmological implications of the recent detection of the EBL in the 125 to 5000 μm wavelength region by the Diffuse Infrared Background Experiment (DIRBE) and Far Infrared Absolute Spectrophotometer (FIRAS) on board the Cosmic Background Explorer (COBE). We first show that the 140 and 240 μm isotropic residual emission found in the DIRBE data cannot be produced by foreground emission sources in the solar system or the Galaxy. The DIRBE 140 and 240 μm isotropic residuals, and by inference the FIRAS residuals as well, are therefore extragalactic. Assuming that most of the 140 and 240 μm emission is from dust yields a 2 σ lower limit of νI(ν) ≈ 5 nW m-2 sr-1 for the EBL at 100 μm. The integrated EBL detected by the COBE between 140 and 5000 μm is ~16 nW m-2 sr-1, roughly 20%-50% of the integrated EBL intensity expected from energy release by nucleosynthesis throughout cosmic history. This also implies that at least ~5%-15% of the baryonic mass density implied by big bang nucleosynthesis has been processed through stars. The COBE observations provide important constraints on the cosmic star formation rate, and we calculate the EBL spectrum for various star formation histories. The results show that the UV and optically determined cosmic star formation rates fall short in producing the observed 140 to 5000 μm background. The COBE observations require the star formation rate at redshifts of z ≈ 1.5 to be larger than that inferred from UV-optical observations by at least a factor of 2. This excess stellar energy must be mainly generated by massive stars, since it otherwise would result in a local K-band luminosity density that is larger than observed. The energy sources could either be yet undetected dust-enshrouded galaxies, or extremely dusty star-forming regions in observed galaxies, and they may be responsible for the observed iron enrichment in the intracluster medium. The exact star formation history or scenarios required to produce the EBL at far-IR wavelengths cannot be unambiguously resolved by the COBE observations and must await future observations.

[1]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[2]  E. L. Wright,et al.  The COBE Diffuse Infrared Background Experiment Search for the Cosmic Infrared Background. I. Limits and Detections , 1998, astro-ph/9806167.

[3]  Lyman Spitzer,et al.  Physical processes in the interstellar medium , 1998 .

[4]  N. Odegard,et al.  The COBE Diffuse Infrared Background Experiment Search for the Cosmic Infrared Background. III. Separation of Galactic Emission from the Infrared Sky Brightness , 1998, astro-ph/9805323.

[5]  G. Zamorani,et al.  High-redshift galaxies in the Hubble Deep Field- II. Colours and number counts , 1998, astro-ph/9803144.

[6]  C. Bennett,et al.  The Spectrum of the Extragalactic Far-Infrared Background from the COBE FIRAS Observations , 1998, astro-ph/9803021.

[7]  E. L. Wright,et al.  The COBE Diffuse Infrared Background Experiment Search for the Cosmic Infrared Background. II. Model of the Interplanetary Dust Cloud , 1997, astro-ph/9806250.

[8]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[9]  M. Malkan,et al.  An Empirically Based Calculation of the Extragalactic Infrared Background , 1997, astro-ph/9710072.

[10]  L. Pozzetti,et al.  The Star Formation History of Field Galaxies , 1997, astro-ph/9708220.

[11]  T. Stanev,et al.  Constraints on the Extragalactic Infrared Background from Gamma-Ray Observations of Markarian 501 , 1997, astro-ph/9708162.

[12]  Hans Ulrik Nørgaard-Nielsen,et al.  Observations of the Hubble Deep Field with the Infrared Space Observatory V. Spectral energy distributions starburst models and star formation history , 1997 .

[13]  J. Weiland,et al.  Comparison of the COBE FIRAS and DIRBE Calibrations , 1997, astro-ph/9707192.

[14]  T. Weekes,et al.  Multiwavelength Observations of a Flare from Markarian 501 , 1997, astro-ph/9707179.

[15]  B. Madore,et al.  Hipparcos Parallaxes and the Cepheid Distance Scale , 1997, astro-ph/9707091.

[16]  E. Dwek The Evolution of the Elemental Abundances in the Gas and Dust Phases of the Galaxy , 1997, astro-ph/9707024.

[17]  E. Hivon,et al.  The optically dark side of galaxy formation , 1997, Nature.

[18]  T. Weekes,et al.  Detection of Multi-TeV Emission from Markarian 421 , 1997 .

[19]  A. Kinney,et al.  The spectral energy distribution of normal, starburst, and active galaxies , 1997, astro-ph/9705114.

[20]  N. Odegard,et al.  A Three-dimensional Decomposition of the Infrared Emission from Dust in the Milky Way , 1997 .

[21]  W. Wall COBE/DIRBE observations of the Orion constellation from the near- to far-infrared , 1997 .

[22]  Linda J. Smith,et al.  The Metallicity of High-Redshift Galaxies: The Abundance of Zinc in 34 Damped Lyα Systems from z = 0.7 to 3.4 , 1997, astro-ph/9704102.

[23]  E. Dwek Can Composite Fluffy Dust Particles Solve the Interstellar Carbon Crisis? , 1997, astro-ph/9701109.

[24]  N. Odegard,et al.  Detection and Characterization of Cold Interstellar Dust and Polycyclic Aromatic Hydrocarbon Emission, from COBE Observations , 1996, astro-ph/9610198.

[25]  D. Sanders,et al.  LUMINOUS INFRARED GALAXIES , 1996 .

[26]  A. Fruchter,et al.  HIGH-REDSHIFT GALAXIES IN THE HUBBLE DEEP FIELD : COLOUR SELECTION AND STAR FORMATION HISTORY TO Z 4 , 1996, astro-ph/9607172.

[27]  K. Gordon,et al.  Escape of Stellar Radiation from a Clumpy Scattering Environment , 1996 .

[28]  A. Kashlinsky,et al.  Clustering of the Diffuse Infrared Light from the COBE DIRBE Maps. I. C(0) and Limits on the Near-Infrared Background , 1996, astro-ph/9604182.

[29]  S. M. Fall,et al.  Cosmic Emissivity and Background Intensity from Damped Lyman-Alpha Galaxies , 1996, astro-ph/9604091.

[30]  A. Bressan,et al.  Uncertainties in the Modeling of Old Stellar Populations , 1996 .

[31]  J. Silk,et al.  On the effects of bursts of massive star formation during the evolution of elliptical galaxies , 1996, astro-ph/9601166.

[32]  O. Fèvre,et al.  The Canada-France Redshift Survey: The Luminosity Density and Star Formation History of the Universe to z ~ 1 , 1996, astro-ph/9601050.

[33]  Matthew Colless,et al.  Autofib Redshift Survey — I. Evolution of the galaxy luminosity function , 1995, astro-ph/9512057.

[34]  K. Borkowski,et al.  The Fragmentation and Vaporization of Dust in Grain-Grain Collisions , 1995 .

[35]  S. M. Fall,et al.  Cosmic chemical evolution , 1995 .

[36]  J. Gunn,et al.  Study of Deep IRAS Fields at 60 micron , 1995 .

[37]  E. Dwek,et al.  On the determination of the cosmic infrared background radiation from the high-energy spectrum of extragalactic gamma-ray sources , 1994 .

[38]  D. Zaritsky Preliminary evidence for dust in galactic halos , 1994 .

[39]  F. Stecker,et al.  New upper limits on intergalactic infrared radiation from high-energy astrophysics , 1993 .

[40]  C. Bennett,et al.  The COBE Mission: Its Design and Performance Two Years after Launch , 1992 .

[41]  Charles L. Bennett,et al.  Preliminary spectral observations of the Galaxy with a 7 deg beam by the Cosmic Background Explorer (COBE) , 1991 .

[42]  F. Ferrini,et al.  Evolution of Dust Grains through a Hot Gaseous Halo , 1991 .

[43]  C. Beichman,et al.  What COBE might see - The far-infrared cosmological background , 1991 .

[44]  J. Bond,et al.  Cosmic backgrounds from primeval dust , 1991 .

[45]  G. Neugebauer,et al.  The properties of infrared galaxies in the local universe , 1991 .

[46]  B. Soifer,et al.  The number counts and infrared backgrounds from infrared-bright galaxies , 1991 .

[47]  S. Stern ISM-induced erosion and gas-dynamical drag in the Oort Cloud , 1990 .

[48]  H. Aumann,et al.  IRAS Constraints on a Cold Cloud around the Solar System , 1990 .

[49]  H. Aumann Spectral class distribution of circumstellar material in main-sequence stars , 1988 .

[50]  B. Madore,et al.  The IRAS bright galaxy sample. II - The sample and luminosity function , 1987 .

[51]  J. Negroponte The cosmic infrared background spectrum , 1986 .

[52]  J. R. Bond,et al.  Spectrum and Anisotropy of the Cosmic Infrared Background , 1986 .

[53]  H. M. Lee,et al.  Optical properties of interstellar graphite and silicate grains , 1984 .

[54]  Thomas J. Ahrens,et al.  Cometary and meteorite swarm impact on planetary surfaces , 1982 .

[55]  Michael S. Turner,et al.  The early Universe , 1981, Nature.

[56]  J. Burns,et al.  Radiation forces on small particles in the solar system , 1979 .

[57]  ApJ, in press , 1999 .

[58]  G. Mamon,et al.  Extragalactic astronomy in the infrared , 1997 .

[59]  E. Dwek Unveiling the cosmic infrared background , 1996 .

[60]  J. Houck,et al.  Tests of Starburst Galaxy Evolution at the North Ecliptic Pole , 1996 .

[61]  E. Dwek,et al.  Cooling, Sputtering, and Infrared Emission from Dust Grains in Fast Nonradiative Shocks , 1996 .

[62]  C. Lonsdale Modeling the Cosmic Infrared Background , 1995 .

[63]  B. Carr SOURCES OF COSMIC INFRARED-SUBMILLIMETRE BACKGROUND RADIATION , 1992 .

[64]  Weinberg,et al.  Dynamical fate of wide binaries in the solar neighborhood , 1987 .

[65]  B. Tinsley,et al.  Star formation rates in normal and peculiar galaxies , 1978 .

[66]  T. Holzer Interaction Between the Solar Wind and the Interstellar Medium , 1976 .

[67]  R. B. Partridge,et al.  ARE YOUNG GALAXIES VISIBLE. II. THE INTEGRATED BACKGROUND. , 1967 .