A new method for the determination of the wave aberration function for high resolution TEM

[1]  C. Jia,et al.  INVESTIGATION OF ATOMIC DISPLACEMENTS AT A SIGMA 3 (111) TWIN BOUNDARY IN BATIO3 BY MEANS OF PHASE-RETRIEVAL ELECTRON MICROSCOPY , 1999 .

[2]  M. Lehmann,et al.  Electron holography at atomic dimensions -- Present state , 1999 .

[3]  Atomic structure of a Sigma=3, {111} twin-boundary junction in a BaTiO3 thin film , 1999 .

[4]  Kirkland,et al.  Experimental characterisation of CCD cameras for HREM at 300 kV , 2000, Ultramicroscopy.

[5]  O. Scherzer The Theoretical Resolution Limit of the Electron Microscope , 1949 .

[6]  M. Haider,et al.  A spherical aberration-corrected 200 kV TEM. , 2003, Journal of electron microscopy.

[7]  J. Gibson Breakdown of the weak-phase object approximation in amorphous objects and measurement of high-resolution electron optical parameters , 1994 .

[8]  O. Krivanek,et al.  Design and first applications of a post-column imaging filter , 1992 .

[9]  H. Lichte,et al.  Holographic measurement of the wave aberration of an electron microscope by means of the phases in the Fourier spectrum , 1995 .

[10]  Terauchi,et al.  A new 200 kV Ω‐filter electron microscope , 1999, Journal of microscopy.

[11]  D Van Dyck,et al.  Exit wave reconstructions using through focus series of HREM images , 2000, Microscopy research and technique.

[12]  D. Van Dyck,et al.  A new approach to object wavefunction reconstruction in electron microscopy , 1993 .

[13]  David J Smith,et al.  The realization of atomic resolution with the electron microscope , 1997 .

[14]  Janssen,et al.  Phase retrieval through focus variation for ultra-resolution in field-emission transmission electron microscopy. , 1992, Physical review letters.

[15]  W. O. Saxton,et al.  Super-resolution by aperture synthesis: tilt series reconstruction in CTEM , 1995 .

[16]  David J. Smith,et al.  «Metallisation» of oxide surfaces observed by in situ-high-resolution electron microscopy , 1985 .

[17]  A. Kirkland,et al.  Characterisation of the signal and noise transfer of CCD cameras for electron detection , 2000, Microscopy research and technique.

[18]  W. O. Saxton,et al.  Multiple beam tilt microscopy for super resolved imaging , 1997 .

[19]  Mader,et al.  Measurement of lens aberrations by means of image displacements in beam-tilt series , 2000, Ultramicroscopy.

[20]  K. Tsuno Optical design of electron microscope lenses and energy filters , 1999 .

[21]  K. Herrmann,et al.  Performance of electron image converters with YAG single-crystal screen and CCD sensor , 1991 .

[22]  Angus I. Kirkland,et al.  The effects of electron and photon scattering on signal and noise transfer properties of scintillators in CCD cameras used for electron detection , 1998 .

[23]  P. Nellist,et al.  Subangstrom Resolution by Underfocused Incoherent Transmission Electron Microscopy , 1998 .

[24]  W. O. Saxton Quantitative comparison of images and transforms , 1998 .

[25]  K. Dierksen,et al.  Determination of Image Aberrations in High-resolution Electron Microscopy using Diffractogram and Cross-correlation Methods , 1995 .

[26]  P. Mooney,et al.  Applications of slow-scan CCD cameras in transmission electron microscopy , 1993 .

[27]  Marin van Heel,et al.  Correlation functions revisited , 1992 .

[28]  Orchowski,et al.  Electron holography surmounts resolution limit of electron microscopy. , 1995, Physical review letters.

[29]  A. Kirkland,et al.  Optimisation of high-resolution image simulations II. Image selection in reciprocal space☆ , 1994 .

[30]  K. D. van der Mast,et al.  An autofocus method for a TEM , 1987 .

[31]  W. O. Saxton Accurate alignment of sets of images , 1994 .

[32]  J. M. Cowley,et al.  The scattering of electrons by atoms and crystals. I. A new theoretical approach , 1957 .

[33]  Kirkland,et al.  Discrete atom imaging of one-dimensional crystals formed within single-walled carbon nanotubes , 2000, Science.

[34]  W. O. Saxton,et al.  Digital image processing: The semper system , 1979 .

[35]  W. Coene,et al.  High-resolution imaging on a field emission TEM , 1993 .

[36]  K. Tsuno,et al.  Design of omega mode imaging energy filters , 1999 .

[37]  C. L. Jia,et al.  Atomic-Resolution Imaging of Oxygen in Perovskite Ceramics , 2003, Science.

[38]  Takeshi Tomita,et al.  Field emission ultrahigh-resolution analytical electron microscope , 1994 .

[39]  C. Djerassi,et al.  THE CRYSTAL STRUCTURE OF Nb$sub 16$W$sub 1$$sub 8$O$sub 94$, A MEMBER OF A (MeO)xMeO$sub 3$ FAMILY OF COMPOUNDS , 1966 .

[40]  Michael Lehmann,et al.  Determination and correction of the coherent wave aberration from a single off-axis electron hologram by means of a genetic algorithm , 2000 .

[41]  C. Jia,et al.  High-resolution imaging with an aberration-corrected transmission electron microscope. , 2002, Ultramicroscopy.

[42]  D. Dyck,et al.  Wave function reconstruction in HRTEM: the parabola method , 1996 .

[43]  F. Zemlin,et al.  Coma-free alignment of high-resolution electron microscopes with the aid of optical diffractograms , 1978 .

[44]  W. O. Saxton Observation of lens aberrations for very high‐resolution electron microscopy. I. Theory , 1995 .

[45]  Stephan Uhlemann,et al.  A spherical-aberration-corrected 200 kV transmission electron microscope , 1998 .

[46]  W. Ruijter Imaging properties and applications of slow-scan charge-coupled device cameras suitable for electron microscopy , 1995 .

[47]  A. Kirkland,et al.  Optimisation of high-resolution image simulations , 1993 .

[48]  A. Thust,et al.  Maximum-likelihood method for focus-variation image reconstruction in high resolution transmission electron microscopy , 1996 .

[49]  Bernd Kabius,et al.  A way to higher resolution: spherical-aberration correction in a 200 kV transmission electron microscope , 1999 .