Distance to Uncontrollability for Convex Processes

The classical study of controllability of linear systems assumes unconstrained control inputs. The "distance to uncontrollability" measures the size of the smallest perturbation to the matrix description of the system rendering it uncontrollable and is a key measure of system robustness. We extend the standard theory of this measure of controllability to the case where the control input must satisfy given linear inequalities. Specifically, we consider the control of differential inclusions, concentrating on the particular case where the control input takes values in a given convex cone.

[1]  R. Cross Multivalued Linear Operators , 1998 .

[2]  Pedro Gajardo,et al.  Epsilon-Eigenvalues of Multivalued Operators , 2003 .

[3]  Juan-Miguel Gracia,et al.  Nearest pair with more nonconstant invariant factors and pseudospectrum , 1999 .

[4]  Alberto Seeger,et al.  Existence de valeurs propres pour les systèmes multivoques : Résultats anciens et nouveaux , 2001 .

[5]  R. Brammer Controllability in Linear Autonomous Systems with Positive Controllers , 1972 .

[6]  E B Lee,et al.  Foundations of optimal control theory , 1967 .

[7]  Adrian S. Lewis,et al.  Pseudospectral Components and the Distance to Uncontrollability , 2005, SIAM J. Matrix Anal. Appl..

[8]  Michael Neumann,et al.  A global minimum search algorithm for estimating the distance to uncontrollability , 1993 .

[9]  D. Hinrichsen,et al.  Real and Complex Stability Radii: A Survey , 1990 .

[10]  Pedro Gajardo,et al.  Higher-order spectral analysis and weak asymptotic stability of convex processes , 2006 .

[11]  Jean-Pierre Aubin,et al.  Controllability of convex processes , 1986 .

[12]  Alberto Seeger,et al.  Spectral analysis of set-valued mappings , 1998 .

[13]  Alberto Seeger,et al.  Rank condition and controllability of parametric convex processes , 2002 .

[14]  Pedro Gajardo,et al.  Inner estimation of the eigenvalue set and exponential series solutions to differential inclusions , 2005 .

[15]  F Rikus Eising,et al.  Between controllable and uncontrollable , 1984 .

[16]  Edward J. Davison,et al.  Real controllability/stabilizability radius of LTI systems , 2004, IEEE Transactions on Automatic Control.

[17]  J. Aubin Set-valued analysis , 1990 .

[18]  R. E. Kalman,et al.  Controllability of linear dynamical systems , 1963 .

[19]  Nguyen Khoa Son,et al.  APPROXIMATE CONTROLLABILITY WITH POSITIVE CONTROLS , 1997 .

[20]  O. Naselli Ricceri On the controllability of a class of differential inclusions depending on a parameter , 1990 .

[21]  Edward J. Davison,et al.  A real radius measure for controllability , 2001, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).

[22]  R. Decarlo,et al.  Computing the distance to an uncontrollable system , 1991 .

[23]  H. D. Tuan,et al.  On controllability of convex differential inclusions in banach space , 1994 .

[24]  Jonathan M. Borwein,et al.  Adjoint Process Duality , 1983, Math. Oper. Res..

[25]  Alberto Seeger Stabilization of the point spectral mapping , 2003 .

[26]  R. Tyrrell Rockafellar,et al.  Convex Analysis , 1970, Princeton Landmarks in Mathematics and Physics.

[27]  Chunyang He,et al.  Estimating the distance to uncontrollability: a fast method and a slow one , 1995 .

[28]  Ludwig Elsner,et al.  An algorithm for computing the distance to uncontrollability , 1991 .

[29]  Pascal Gahinet,et al.  Distance to the nearest uncontrollable pair and algebraic Riccati equation , 1990, 29th IEEE Conference on Decision and Control.

[30]  M.L.J. Hautus,et al.  Controllability and observability conditions of linear autonomous systems , 1969 .

[31]  C. Paige Properties of numerical algorithms related to computing controllability , 1981 .

[32]  Vu Ngoc Phat,et al.  Weak Asymptotic Stabilizability of Discrete-Time Systems Given by Set-Valued Operators , 1996 .