Onsager's Conjecture for Admissible Weak Solutions

We prove that given any $\beta<1/3$, a time interval $[0,T]$, and given any smooth energy profile $e \colon [0,T] \to (0,\infty)$, there exists a weak solution $v$ of the three-dimensional Euler equations such that $v \in C^{\beta}([0,T]\times \mathbb{T}^3)$, with $e(t) = \int_{\mathbb{T}^3} |v(x,t)|^2 dx$ for all $t\in [0,T]$. Moreover, we show that a suitable $h$-principle holds in the regularity class $C^\beta_{t,x}$, for any $\beta<1/3$. The implication of this is that the dissipative solutions we construct are in a sense typical in the appropriate space of subsolutions as opposed to just isolated examples.

[1]  L. Sz'ekelyhidi Relaxation of the incompressible porous media equation , 2011, 1102.2597.

[2]  Lack of Uniqueness for Weak Solutions of the Incompressible Porous Media Equation , 2009, 0912.3210.

[3]  Philip Isett,et al.  On Nonperiodic Euler Flows with Hölder Regularity , 2014, 1402.2305.

[4]  N. Kuiper,et al.  On C1-isometric imbeddings. II , 1955 .

[5]  L. Székelyhidi,et al.  Non-uniqueness and h-Principle for Hölder-Continuous Weak Solutions of the Euler Equations , 2016, 1603.09714.

[6]  J. Nash C 1 Isometric Imbeddings , 1954 .

[7]  Camillo De Lellis,et al.  On Admissibility Criteria for Weak Solutions of the Euler Equations , 2007, 0712.3288.

[8]  V. Vicol,et al.  Hölder Continuous Solutions of Active Scalar Equations , 2014, 1405.7656.

[9]  A. Scott,et al.  Ann Arbor , 1980 .

[10]  Sergio Conti,et al.  h -Principle and Rigidity for C 1, α Isometric Embeddings , 2012 .

[11]  A. Majda,et al.  Vorticity and incompressible flow , 2001 .

[12]  E Weinan,et al.  Onsager's conjecture on the energy conservation for solutions of Euler's equation , 1994 .

[13]  Z. Xin,et al.  Non-uniqueness of Admissible Weak Solutions to Compressible Euler Systems with Source Terms , 2015, 1506.01103.

[14]  Die Vermutung von Onsager Onsager's Conjecture , 2014 .

[15]  Camillo De Lellis,et al.  Anomalous dissipation for 1/5-Hölder Euler flows , 2015 .

[16]  Camillo De Lellis,et al.  Dissipative continuous Euler flows , 2012, 1202.1751.

[17]  Claude Bardos,et al.  Mathematical Topics in Fluid Mechanics, Volume 1, Incompressible Models , 1998 .

[18]  D. C'ordoba,et al.  Mixing solutions for the Muskat problem , 2016, Inventiones mathematicae.

[19]  Camillo De Lellis,et al.  The Euler equations as a differential inclusion , 2007 .

[20]  Camillo De Lellis,et al.  Dissipative Euler Flows and Onsager's Conjecture , 2012, 1205.3626.

[21]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[22]  Camillo De Lellis,et al.  The $h$-principle and the equations of fluid dynamics , 2011, 1111.2700.

[23]  Pierre-Louis Lions,et al.  Mathematical Topics in Fluid Mechanics: Volume 2: Compressible Models , 1998 .

[24]  P. Constantin Lagrangian-eulerian methods for uniqueness in hydrodynamic systems , 2014, 1812.00039.

[25]  Philip Isett,et al.  A Proof of Onsager's Conjecture , 2016, 1608.08301.

[26]  Philip Isett Regularity in time along the coarse scale flow for the incompressible Euler equations , 2013, 1307.0565.

[27]  A. Choffrut,et al.  Weak Solutions to the Stationary Incompressible Euler Equations , 2014, SIAM J. Math. Anal..

[28]  Philip Isett Holder continuous Euler flows with compact support in time , 2013 .

[29]  Camillo De Lellis,et al.  Dissipative Euler Flows with Onsager‐Critical Spatial Regularity , 2014, 1404.6915.

[30]  Steve Shkoller,et al.  Nonuniqueness of Weak Solutions to the SQG Equation , 2016, Communications on Pure and Applied Mathematics.

[31]  Vladimir Scheffer,et al.  An inviscid flow with compact support in space-time , 1993 .

[32]  T. Buckmaster Onsager’s Conjecture Almost Everywhere in Time , 2013, 1304.1049.

[33]  Yann Brenier,et al.  Weak-Strong Uniqueness for Measure-Valued Solutions , 2009, 0912.1028.

[34]  Elisabetta Chiodaroli,et al.  A counterexample to well-posedness of entropy solutions to the compressible Euler system , 2012, 1201.3470.

[35]  A. Cheskidov,et al.  Energy conservation and Onsager's conjecture for the Euler equations , 2007, 0704.0759.

[36]  Camillo De Lellis,et al.  Transporting microstructure and dissipative Euler flows , 2013, 1302.2815.

[37]  R. Shvydkoy Convex integration for a class of active scalar equations , 2010, 1010.4755.

[38]  A. Shnirelman On the nonuniqueness of weak solution of the Euler equation , 1997 .

[39]  Gregory L. Eyink,et al.  Energy dissipation without viscosity in ideal hydrodynamics I. Fourier analysis and local energy transfer , 1994 .

[40]  L. Onsager,et al.  Statistical hydrodynamics , 1949 .

[41]  A. Zygmund,et al.  Singular integrals and periodic functions , 1954 .