Short-Term Electricity Demand Forecasting Using a Functional State Space Model
暂无分享,去创建一个
[1] Dominik Liebl,et al. Modeling and forecasting electricity spot prices: A functional data perspective , 2013, 1310.1628.
[2] Siem Jan Koopman,et al. Filtering and Smoothing of State Vector for Diffuse State-Space Models , 2001 .
[3] Grigorios L. Kyriakopoulos,et al. Electrical energy storage systems in electricity generation: Energy policies, innovative technologies, and regulatory regimes , 2016 .
[4] Philippe C. Besse,et al. Approximation spline de la prvision d'un processus fonctionnel autorgressif d'ordre 1 , 1996 .
[5] Elizabeth E. Holmes,et al. MARSS: Multivariate Autoregressive State-space Models for Analyzing Time-series Data , 2012, R J..
[6] Haipeng Shen,et al. Functional dynamic factor models with application to yield curve forecasting , 2012, 1209.6172.
[7] S. Koopman,et al. An Hourly Periodic State Space Model for Modelling French National Electricity Load , 2007 .
[8] A. Antoniadis,et al. A functional wavelet–kernel approach for time series prediction , 2006 .
[9] Ian T. Nabney,et al. Short-term electricity demand and gas price forecasts using wavelet transforms and adaptive models , 2010 .
[10] Serge Guillas,et al. Doubly stochastic Hilbertian processes , 2002, Journal of Applied Probability.
[11] Kazuhiko Kakamu,et al. Space‐Time Model versus VAR Model: Forecasting Electricity demand in Japan , 2013 .
[12] Ana M. Aguilera,et al. Derivation of a State-Space Model by Functional Data Analysis , 2003, Comput. Stat..
[13] Yoshiyasu Tamura,et al. Using the ensemble Kalman filter for electricity load forecasting and analysis , 2016 .
[14] J. Helske,et al. KFAS: Exponential Family State Space Models in R , 2016, 1612.01907.
[15] Siem Jan Koopman,et al. Dynamic factors in periodic time-varying regressions with an application to hourly electricity load modelling , 2012, Comput. Stat. Data Anal..