DISK FORMATION VERSUS DISK ACCRETION—WHAT POWERS TIDAL DISRUPTION EVENTS?

A tidal disruption event (TDE) takes place when a star passes near enough to a massive black hole to be disrupted. About half the star’s matter is given elliptical trajectories with large apocenter distances, and the other half is unbound. To form an accretion flow, the bound matter must lose a significant amount of energy, with the actual amount depending on the characteristic scale of the flow measured in units of the black hole’s gravitational radius ( ∼ 10 51 ( R / 1000 R g ) − 1 ?> erg). Recent numerical simulations have revealed that the accretion flow scale is close to the scale of the most bound initial orbits, ∼ 10 3 M BH , 6.5 − 2 / 3 R g ∼ 10 15 M BH , 6.5 1 / 3 ?> cm from the black hole, and the corresponding energy dissipation rate is ∼ 10 44 M BH , 6.5 − 1 / 6 ?> erg s−1. We suggest that the energy liberated during the formation of the accretion disk, rather than the energy liberated by subsequent accretion onto the black hole, powers the observed optical TDE candidates. The observed rise times, luminosities, temperatures, emission radii, and line widths seen in these TDEs are all more readily explained in terms of heating associated with disk formation rather than in terms of accretion.

[1]  T. Piran,et al.  GENERAL RELATIVISTIC HYDRODYNAMIC SIMULATION OF ACCRETION FLOW FROM A STELLAR TIDAL DISRUPTION , 2015, 1501.04365.

[2]  J. Stone,et al.  A GLOBAL THREE-DIMENSIONAL RADIATION MAGNETO-HYDRODYNAMIC SIMULATION OF SUPER-EDDINGTON ACCRETION DISKS , 2014, 1410.0678.

[3]  M. Schultheis,et al.  The Gaia-ESO Survey: metallicity and kinematic trends in the Milky Way bulge , 2014, 1408.4558.

[4]  G. Farrar,et al.  MEASUREMENT OF THE RATE OF STELLAR TIDAL DISRUPTION FLARES , 2014, 1407.6425.

[5]  J. Prieto,et al.  ASASSN-14ae: a tidal disruption event at 200 Mpc , 2014, 1405.1417.

[6]  Adam A. Miller,et al.  A CONTINUUM OF H- TO He-RICH TIDAL DISRUPTION CANDIDATES WITH A PREFERENCE FOR E+A GALAXIES , 2014, 1405.1415.

[7]  A. Laor,et al.  Line-driven winds and the UV turnover in AGN accretion discs , 2013, 1312.3556.

[8]  A. Tchekhovskoy,et al.  Numerical simulations of super-critical black hole accretion flows in general relativity , 2013, 1311.5900.

[9]  P. Amaro-Seoane,et al.  DISRUPTION OF A RED GIANT STAR BY A SUPERMASSIVE BLACK HOLE AND THE CASE OF PS1-10jh , 2013, 1307.6176.

[10]  J. Guillochon,et al.  PS1-10jh: THE DISRUPTION OF A MAIN-SEQUENCE STAR OF NEAR-SOLAR COMPOSITION , 2013, 1304.6397.

[11]  S. Gezari,et al.  THE ULTRAVIOLET-BRIGHT, SLOWLY DECLINING TRANSIENT PS1-11af AS A PARTIAL TIDAL DISRUPTION EVENT , 2013, 1309.3009.

[12]  A. Loeb,et al.  Consequences of Strong Compression in Tidal Disruption Events , 2012, 1210.3374.

[13]  Enrico Ramirez-Ruiz,et al.  HYDRODYNAMICAL SIMULATIONS TO DETERMINE THE FEEDING RATE OF BLACK HOLES BY THE TIDAL DISRUPTION OF STARS: THE IMPORTANCE OF THE IMPACT PARAMETER AND STELLAR STRUCTURE , 2012, 1206.2350.

[14]  T. Grav,et al.  An ultraviolet–optical flare from the tidal disruption of a helium-rich stellar core , 2012, Nature.

[15]  T. Piran,et al.  JETS FROM TIDAL DISRUPTIONS OF STARS BY BLACK HOLES , 2011, 1111.2802.

[16]  M. Kesden Tidal disruption rate of stars by spinning supermassive black holes , 2011, 1109.6329.

[17]  Lifan Wang,et al.  TRANSIENT SUPERSTRONG CORONAL LINES AND BROAD BUMPS IN THE GALAXY SDSS J074820.67+471214.3 , 2011, 1108.2790.

[18]  Nathaniel R. Butler,et al.  A Possible Relativistic Jetted Outburst from a Massive Black Hole Fed by a Tidally Disrupted Star , 2011, Science.

[19]  N. Shaviv,et al.  Super-Eddington slim accretion discs with winds , 2010, 1004.1797.

[20]  E. Quataert,et al.  Optical Flares from the Tidal Disruption of Stars by Massive Black Holes , 2009, Proceedings of the International Astronomical Union.

[21]  S. Gezari,et al.  LUMINOUS THERMAL FLARES FROM QUIESCENT SUPERMASSIVE BLACK HOLES , 2009, 0904.1596.

[22]  E. Ramirez-Ruiz,et al.  TIDAL DISRUPTION AND IGNITION OF WHITE DWARFS BY MODERATELY MASSIVE BLACK HOLES , 2008, 0808.2143.

[23]  D. Gadotti Structural properties of pseudo-bulges, classical bulges and elliptical galaxies: a Sloan Digital Sky Survey perspective , 2008, 0810.1953.

[24]  University of Cambridge,et al.  Stellar disruption by a supermassive black hole: is the light curve really proportional to t -5/3 ? , 2008, 0810.1288.

[25]  Juri Poutanen,et al.  Supercritically accreting stellar mass black holes as ultraluminous X-ray sources , 2006, astro-ph/0609274.

[26]  M. Mori,et al.  Supercritical Accretion Flows around Black Holes: Two-dimensional, Radiation Pressure-dominated Disks with Photon Trapping , 2005, astro-ph/0504168.

[27]  L. Ho,et al.  The Stellar Populations in the Central Parsecs of Galactic Bulges , 2004, Proceedings of the International Astronomical Union.

[28]  G. Hasinger,et al.  A Huge Drop in the X-Ray Luminosity of the Nonactive Galaxy RX J1242.6–1119A, and the First Postflare Spectrum: Testing the Tidal Disruption Scenario , 2004, astro-ph/0402468.

[29]  Hans-Walter Rix,et al.  On the Black Hole Mass-Bulge Mass Relation , 2004, astro-ph/0402376.

[30]  D. Merritt,et al.  Revised Rates of Stellar Disruption in Galactic Nuclei , 2003, astro-ph/0305493.

[31]  J. L. Donley,et al.  Accepted for publication in The Astronomical Journal Large-Amplitude X-ray Outbursts from Galactic Nuclei: A Systematic Survey Using ROSAT Archival Data , 2002 .

[32]  M. Livio,et al.  Tidal Disruption of a Solar-Type Star by a Supermassive Black Hole , 2000, astro-ph/0002499.

[33]  Andrew Ulmer,et al.  Flares from the Tidal Disruption of Stars by Massive Black Holes , 1999 .

[34]  S. Tremaine,et al.  Rates of tidal disruption of stars by massive central black holes , 1999, astro-ph/9902032.

[35]  A. Loeb,et al.  Optical Appearance of the Debris of a Star Disrupted by a Massive Black Hole , 1997, astro-ph/9703079.

[36]  C. Kochanek The Aftermath of tidal disruption: The Dynamics of thin gas streams , 1994 .

[37]  Achim Weiss,et al.  Stellar Structure and Evolution , 1990 .

[38]  Charles R. Evans,et al.  The tidal disruption of a star by a massive black hole , 1989 .

[39]  J. Lasota,et al.  Slim Accretion Disks , 1988 .

[40]  Martin J. Rees,et al.  Tidal disruption of stars by black holes of 106–108 solar masses in nearby galaxies , 1988, Nature.

[41]  M. Begelman Can a spherically accreting black hole radiate very near the Eddington limit , 1979 .

[42]  Martin J. Rees,et al.  Effects of Massive Central Black Holes on Dense Stellar Systems , 1976 .