The neumann series: A tool for the analysis of some microstrip structures

The aim of this paper is to present a general methodology for studying printed electromagnetic structures. Canonical microstrip structures can be described by means of a system of coupled integral equations, which can be easily transformed into a system of algebraic equations by using the Neumann series, namely a series of Bessel functions. Careful numerical analysis shows that, in order to obtain a reasonable accuracy of the fields and/or potential, small matrices are necessary. Static and dynamic cases are discussed.RésuméCet article présente une méthodologie générate pour l’étude des structures électromagnétiques imprimées. Les structures canoniques à microbandes peuvent être décrites au moyen d’un système d’équations intégrates couplées, qui peut facilement être transformé en un système d’équations algébriques en utilisant une série de Neumann, c’est-à-dire une série de fonctions de Bessel. Une analyse numérique attentive montre que des matrices effectives petites sont nécessaires dans le but d’obtenir une précision raisonnable des champs ou des potentiels. Des cas statiques et dynamiques sont étudiés.

[1]  I. S. Gradshteyn,et al.  Table of Integrals, Series, and Products , 1976 .

[2]  W. Chew,et al.  Resonance of the axial-symmetric modes in microstrip disk resonators , 1980 .

[3]  Weng Cho Chew,et al.  Effects of Fringing Fields on the Capacitance of Circular Microstrip Disk , 1980 .

[4]  G. Miano,et al.  A new method to compute the capacitance of the circular patch resonator , 1996 .

[5]  W. Chew,et al.  Resonance of nonaxial symmetric modes in circular microstrip disk antenna , 1980 .

[6]  T. Itoh,et al.  A New Method for Calculating the Capacitance of a Circular Disk for Microwave Integrated Circuits (Short Papers) , 1973 .

[7]  K. Eswaran,et al.  On the solutions of a class of dual integral equations occurring in diffraction problems , 1990, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[8]  Tatsuo Itoh,et al.  Hankel transform domain analysis of open circular microstrip radiating structures , 1981 .

[9]  L. Milne‐Thomson A Treatise on the Theory of Bessel Functions , 1945, Nature.

[10]  William H. Press,et al.  Numerical recipes , 1990 .

[11]  L. Verolino,et al.  Longitudinal coupling impedance of a circular iris , 1991, Il Nuovo Cimento A.

[12]  J. Mosig Arbitrarily shaped microstrip structures and their analysis with a mixed potential integral equation , 1988 .

[13]  Edward F. Kuester,et al.  Accurate analysis of arbitrarily shaped patch resonators on thin substrates , 1988 .

[14]  P. S. Kooi,et al.  Capacitance of a circular disc for applications in microwave integrated circuits , 1981 .

[15]  G. Gladwell,et al.  A Legendre Approximation Method for the Circular Microstrip Disk Problem , 1977 .

[16]  A new method to compute the longitudinal coupling impedance of a drift tube , 1996 .

[17]  G. Miano,et al.  A new method of solution of Halln's problem , 1995 .

[18]  J. Gillis,et al.  Mixed boundary value problems in potential theory , 1966 .

[19]  L. Bahar,et al.  On the Solution of Simultaneous Dual Integral Equations , 1964 .

[20]  Josemir W Sander,et al.  Neurological disease in a defined population: the results of a pilot study in two general practices. , 1996, Neuroepidemiology.

[21]  Y. T. Lo,et al.  Rigorous analysis of a circular patch antenna excited by a microstrip transmission line , 1989 .